Japanese brome (Bromus japonicus Thunb.) is a weed commonly found in roadsides, floodplain wetlands, and farmlands. During September 2020 and 2021, a leaf spot disease was observed on B. japonicus in greenhouses of Baodi district, Tianjin, China (117°15'E, 39°47'N). More than 10% of the weeds were infected. Initial irregular brown spots on leaf apices continued to expand until adjacent spots coalesced. Eventually, severely infected leaves became yellow, thinner, drier and withered. Small patches (3×3 mm) were cut from symptomatic leaves, sterilized with 75% ethanol for 30s, rinsed three times with sterile water and incubated on Petri dishes with potato dextrose agar at 25°C in darkness for 7 days. Three isolates, with uniform morphology were selected for further analysis. Colonies were cottony with entire edges and aerial white mycelia; and average growth rate of 4.5 mm/day. The upper side was pale white, and the reverse side was grayish-green. Conidia were aseptate, hyaline, subcylindrical with rounded ends, 8.6 to 18.7×4.4 to 8.3 μm (n = 50). Appressoria were dark brown, oval or irregular shaped with a few lobes, 5.7 to 9.4×4.5 to 7.8 μm (n = 50). Total genomic DNA of isolates was extracted with Fungal DNA Kit (GBCBIO, Guangzhou, China). Primers for sequences of internal transcribed spacer (ITS) regions, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-tubulin (TUB2), and calmodulin (CAL) genes were amplified and sequenced (Weir et al., 2012). After aligned and trimmed, the sequences of TJBDA1, TJBDA2, and TJBDA3 were identical. TJBDA1 representative isolate sequences were deposited in GenBank ITS OP247554 with 99.83% (576/577) similarity to MT476809, GAPDH OP414834 with 99.59% (244/245) similarity to MT501009, TUB2 OP414836 with 100% (703/703) to MT501053, and CAL OP414835 with 100% (601/601) to MT500921. Maximum likelihood trees based on concatenated sequences of the four genes were constructed using MEGA7.0. The results showed that the strains isolated from B. japonicus were closely related to C. aenigma with 99% bootstrap support. Pathogenicity tests were conducted on 3-leaf stage B. japonicus seedlings. Conidial suspension of TJBDA1 (1×106 conidia/ml) brushed from a 7-day-old culture of the fungus were sprayed on 9 B. japonicus seedlings. Control plants were sprayed with sterile water. All treatments were replicated four times. The treatment plants were placed in an incubator (25°C, relative humidity > 80%, 12-h photoperiod). Typical leaf spot symptoms resembling ones in the fields were observed on inoculated leaves after 7 days, but control leaves remained symptomless. The fungi reisolated from diseased leaves were morphologically and molecularly identical to the inoculated isolatescompleting Koch's postulates. According to morphological, pathological characteristics and multilocus phylogenetic analysis, the isolated strains from B. japonicus were identified as C. aenigma. To our knowledge, this is a new host record for C. aenigma causing anthracnose on B. japonicus in China. Currently, B. japonicus has evolved a high level of resistance to herbicides in some regions of China (Li et al, 2022) and C. aenigma caused serious disease to B. japonicus. We hope to discover a biocontrol method against weed on non-host cultivated plants through the production of secondary metabolites by C. aenigma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-02-23-0335-PDN | DOI Listing |
Fish Shellfish Immunol
December 2024
Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China; Dalian Jinshiwan Laboratory, Dalian, China. Electronic address:
A number of studies have been demonstrated that arachidonate 5-lipoxygenase (ALOX-5) plays a role in regulating a range of physiological and pathological processes through the catalysis of leukotriene formation from arachidonic acid (ARA). The coding sequence of ALOX-5 from Apostichopus japonicus (Aj-ALOX-5) was successfully amplified, resulting in a 2028 bp ORF sequence that encodes 674 amino acids. A comparison of the amino acid sequence with those of other 5-lipoxygenases revealed that Aj-ALOX-5 has the N-terminal "PLAT domain" and C-terminal "lipoxygenase structural domain" characteristic of this enzyme family.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
December 2024
Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China. Electronic address:
The intestinal microbiota plays a crucial role in the health and development of fish, engaging in intricate interactions with the host organism. As a significant species in aquaculture, Lateolabrax japonicus serves as an exemplary model for investigating these interactions and their subsequent effects on growth and health. This study utilized a multi-omics approach, incorporating metagenomic sequencing and non-targeted metabolomics, to delineate the gut microbiota and metabolome of L.
View Article and Find Full Text PDFPLoS One
December 2024
Key Laboratory of Sustainable and Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China.
In order to study the optimal use of Lactobacillus plantarum in sea cucumber (Apostichopus japonicus), 49 days feeding trial was conducted to determine the influence of immersion bathing in different concentrations of Lactobacillus plantarum CLY-05 on body weight gain rate and non-specific immune activities. The potential effect of CLY-05 on gut microbiota was also analyzed during the immersion bathing at the optimum concentration. The results showed that the body weight growth rate of all bathing groups was higher than that of control.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China.
Medicinal plants serve as vital resources for preventing and treating diseases, with their flowers, fruits, leaves, roots, or entire plants being utilized in the pharmaceutical industry or as direct therapeutic agents. During our investigation of microfungi associated with medicinal plants in Guizhou and Sichuan Provinces, China, several asexual and sexual fungal morphs were collected. Multi-locus phylogenetic analysis based on combined ITS, LSU, SSU and datasets revealed that these taxa are related to the family Dictyosporiaceae.
View Article and Find Full Text PDFCurr Issues Mol Biol
November 2024
Institute of Biomaterial • Implant, Department of Oral Anatomy, School of Dentistry, Wonkwang University, Iksan 54538, Republic of Korea.
has been used both as a food and in traditional medicine. However, its anti-inflammatory effects in periodontal diseases have not been studied. We examined the anti-inflammatory properties of extract in RAW 264.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!