1. A study was conducted to assess the impact of supplementing-graded concentrations of emulsifier on the production performance, gut microbial count, and digestibility of nitrogen and energy in broiler chicken fed diets without AGP.2. Male broiler chicks ( = 1500; Vencobb-430), aged one-day-old, were randomly allocated into six dietary groups each with 10 replicates of 25 birds each. A maize-soybean and meat and bone meal-based basal diet without antibiotic (AGP) growth promoter served as negative control (NC). The basal diet was supplemented with BMD (AGP, bacitracin methylene disalicylate-BMD 100 g/T), which served as the positive control (PC). Emulsifier was added to the NC diets at either 250 g/ton in all phases (250-All), 250 g in starter and grower phases, and 500 g in the finisher phase (250:250:500), 250 g in starter and 500 g in both grower and finisher phases (250:500:500) and 500 g in all phases (500 g-All).3. Two broilers per replicate were slaughtered to record carcase traits and gut microbial count on day 43. There was significant improvement in body weight gain (BWG) and reduced FCR in broilers fed 250:250:500 and 250:500:500 g emulsifiers compared to other treatment groups. Carcase traits and faecal microbial count did not differ among treatments. The inclusion of BMD significantly improved nitrogen (N) digestibility compared to the NC group. The digestibility of emulsifier-supplemented groups was similar to those fed by the BMD group except for the 500-All group, which was an intermediary between NC and other emulsifier-fed groups.4. It was concluded that supplementation with emulsifier (250:250:500 or 250:500:500) without antibiotic growth promoter significantly improved FCR and body weight gain similar to broilers receiving antibiotic growth promoter, which was associated with increased ileal digestibility of N and energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00071668.2023.2248583 | DOI Listing |
Plant Physiol
January 2025
Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin 150030, China.
Plant height is a crucial agronomic characteristic that substantially influences soybean [Glycine max (L.) Merr.] yield.
View Article and Find Full Text PDFPlant Physiol
January 2025
Shaanxi Engineering Research Center for Vegetables/College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
Proper regulation of the source-sink relationship is an effective way to increase crop yield. Gibberellin (GA) is an important regulator of plant growth and development, and physiological evidence has demonstrated that GA can promote source-sink sucrose partitioning. However, the underlying molecular mechanism remains unclear.
View Article and Find Full Text PDFPlant Direct
January 2025
Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Institute of Chinese Herbal Medicines Henan Academy of Agricultural Sciences Zhengzhou China.
The superfamily represents a class of transcription factors involved in plant growth, development, and stress responses. ., also known as safflower, is an important plant whose flowers contain carthamin, an expensive aromatic pigment with various medicinal and flavoring properties.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization. Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, P. R. China.
Light is one of the most important environmental factors that affect plant growth and development. It also stimulates anthocyanin biosynthesis in plants. However, the precise molecular mechanisms through which light regulates anthocyanin biosynthesis, particularly in non-model plant species, remain poorly understood.
View Article and Find Full Text PDFSci China Life Sci
January 2025
Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
Skeletal muscle plays a significant role in both local and systemic energy metabolism. The current investigation aims to explore the role of the Bambi gene in skeletal muscle, focusing on its implications for muscle hypertrophy and systemic metabolism. We hypothesize that skeletal muscle-specific deletion of Bambi induces muscle hypertrophy, improves metabolic performance, and activates thermogenic adipocytes via the reprogramming of progenitor of iWAT, offering potential therapeutic strategies for metabolic syndromes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!