A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Personalising monitoring for chemotherapy patients through predicting deterioration in renal and hepatic function. | LitMetric

Background: In those receiving chemotherapy, renal and hepatic dysfunction can increase the risk of toxicity and should therefore be monitored. We aimed to develop a machine learning model to identify those patients that need closer monitoring, enabling a safer and more efficient service.

Methods: We used retrospective data from a large academic hospital, for patients treated with chemotherapy for breast cancer, colorectal cancer and diffuse-large B-cell lymphoma, to train and validate a Multi-Layer Perceptrons (MLP) model to predict the outcomes of unacceptable rises in bilirubin or creatinine. To assess the performance of the model, validation was performed using patient data from a separate, independent hospital using the same variables. Using this dataset, we evaluated the sensitivity and specificity of the model.

Results: 1214 patients in total were identified. The training set had almost perfect sensitivity and specificity of >0.95; the area under the curve (AUC) was 0.99 (95% CI 0.98-1.00) for creatinine and 0.97 (95% CI: 0.95-0.99) for bilirubin. The validation set had good sensitivity (creatinine: 0.60, 95% CI: 0.55-0.64, bilirubin: 0.54, 95% CI: 0.52-0.56), and specificity (creatinine 0.98, 95% CI: 0.96-0.99, bilirubin 0.90, 95% CI: 0.87-0.94) and area under the curve (creatinine: 0.76, 95% CI: 0.70, 0.82, bilirubin 0.72, 95% CI: 0.68-0.76).

Conclusions: We have demonstrated that a MLP model can be used to reduce the number of blood tests required for some patients at low risk of organ dysfunction, whilst improving safety for others at high risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10524043PMC
http://dx.doi.org/10.1002/cam4.6418DOI Listing

Publication Analysis

Top Keywords

renal hepatic
8
mlp model
8
sensitivity specificity
8
area curve
8
95%
8
patients
5
bilirubin
5
creatinine
5
personalising monitoring
4
monitoring chemotherapy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!