KLF2 transcription suppresses endometrial cancer cell proliferation, invasion, and migration through the inhibition of NPM1.

J Obstet Gynaecol

Department of Obstetrics and Gynecology, Department of Gynecomatology, Ganzhou Cancer Hospital, Ganzhou, P.R. China.

Published: December 2023

Endometrial cancer (EC) is the most common gynaecologic malignancy. This study was to explore the role of kruppel-like factor 2 (KLF2) in EC cell behaviours. The expression of KLF2 in EC and its correlation with NPM1 were first predicted on the database. Levels of KLF2 and nucleophosmin 1 (NPM1) in EC cell lines were then determined. After transfection of the overexpression vector of KLF2 or NPM1, cell proliferation, invasion, and migration were evaluated. The binding relationship between KLF2 and the NPM1 promoter was analysed. KLF2 was downregulated while NPM1 was upregulated in EC cells. KLF2 overexpression reduced the proliferation potential of EC cells and the number of invaded and migrated cells. KLF2 was enriched in the NPM1 promoter and inhibited NPM1 transcriptional level. NPM1 overexpression neutralised the effects of KLF2 overexpression on suppressing EC cell growth. Collectively, KLF2 was decreased in EC cells and KLF2 overexpression increased the binding to the NPM1 promoter to inhibit NPM1 transcription, thus suppressing EC cell growth.

Download full-text PDF

Source
http://dx.doi.org/10.1080/01443615.2023.2238827DOI Listing

Publication Analysis

Top Keywords

klf2
12
npm1 promoter
12
cells klf2
12
klf2 overexpression
12
npm1
11
endometrial cancer
8
cell proliferation
8
proliferation invasion
8
invasion migration
8
npm1 cell
8

Similar Publications

Age-Related Choroidal Involution Is Associated with the Senescence of Endothelial Progenitor Cells in the Choroid.

Biomedicines

November 2024

Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2M4, Canada.

Choroidal involution is a common feature of age-related ischemic retinopathies such as age-related macular degeneration (AMD). It is now well recognized that endothelial progenitor cells (EPCs) are essential to endothelial repair processes and in maintaining vascular integrity. However, the contribution of EPCs and the role of senescence in age-related choroidal vascular degeneration remain to be investigated.

View Article and Find Full Text PDF

KLF2-dependent transcriptional regulation safeguards the heart against pathological hypertrophy.

J Mol Cell Cardiol

December 2024

Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration, Chinese Academy of Medical Sciences, Beijing 100037, China. Electronic address:

Background: Our previous single-cell RNA sequencing study in the adult human heart revealed that cardiomyocytes from both the atrium and ventricle display high activities of Krüppel-like factor 2 (KLF2) regulons. However, the role of the transcription factor KLF2 in cardiomyocyte biology remains largely unexplored.

Methods And Results: We employed transverse aortic constriction surgery in male C57BL/6 J mice to develop an in vivo model of cardiac hypertrophy, and generated different in vitro cardiac hypertrophy models in neonatal rat ventricular myocytes and human embryonic stem cell-derived cardiomyocytes.

View Article and Find Full Text PDF

High Shear Stress Reduces ERG Causing Endothelial-Mesenchymal Transition and Pulmonary Arterial Hypertension.

Arterioscler Thromb Vasc Biol

December 2024

Department of Pediatrics (T.S., J.-R.M., Y.H.C., J.M.S., J. Kaplan, A.C., L.W., D.G., S.T., S.I., M.D., W.Y., A.L.M., M.R.).

Background: Computational modeling indicated that pathological high shear stress (HSS; 100 dyn/cm) is generated in pulmonary arteries (PAs; 100-500 µm) in congenital heart defects causing PA hypertension (PAH) and in idiopathic PAH with occlusive vascular remodeling. Endothelial-to-mesenchymal transition (EndMT) is a feature of PAH. We hypothesize that HSS induces EndMT, contributing to the initiation and progression of PAH.

View Article and Find Full Text PDF

Polycomb Repressive Complex 2 promotes atherosclerotic plaque vulnerability.

bioRxiv

December 2024

Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511, USA.

Atherosclerotic cardiovascular disease (ASCVD), the leading cause of mortality worldwide, is driven by endothelial cell inflammatory activation and counter-balanced by anti-inflammatory transcription factors Klf2 and Klf4 (Klf2/4). Understanding vascular endothelial inflammation to develop effective treatments is thus essential. Here, we identify, Polycomb Repressive Complex (PRC) 2, which blocks gene transcription by trimethylating histone3 Lysine27 in gene promoter/enhancers, as a potent, therapeutically targetable determinant of vascular inflammation and ASCVD progression.

View Article and Find Full Text PDF

KLF2 controls the apoptosis of neutrophils and is associated with disease activity of systemic lupus erythematosus.

Arthritis Res Ther

December 2024

Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.

Background: Neutropenia is more common in patients with systemic lupus erythematosus (SLE) and is a major cause of life-threatening infections. The increased apoptosis of neutrophils is likely to be an essential cause of neutropenia in SLE. However, the detailed mechanisms of increased neutrophil apoptosis in SLE remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!