High temperature decomposition of polymeric carbon monoxide at pressures up to 120 GPa.

J Chem Phys

European Laboratory for Nonlinear Spectroscopy, LENS, Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy.

Published: August 2023

While polymeric carbon monoxide (pCO) has been experimentally found to remain amorphous and undecomposed at room temperature up to 50 GPa, the question of whether crystalline counterparts of it can be obtained naturally raises. From different computational studies, it can be inferred that either the crystallization of amorphous pCO (a-pCO) or its decomposition into a mixture of CxOy suboxides (x > y) or carbon and CO2 may occur. In this study, we report experimental investigations of the high temperature (700-4000 K) transformation of a-pCO in the 47-120 GPa pressure range, conducted by x-ray diffraction in laser heated diamond anvil cells. Our results show the formation of no crystalline phases other than CO2 phase V, thus indicating the decomposition of the pristine a-pCO into CO2 and, likely, a mixture of amorphous CxOy suboxides and amorphous carbon hardly detectable at extreme conditions. These results support the theoretical picture of the pCO decomposition. We also show that the pressure-temperature kinetic border for this decomposition is very steep, thus indicating a strongly pressure-dependent kinetic barrier.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0157907DOI Listing

Publication Analysis

Top Keywords

high temperature
8
polymeric carbon
8
carbon monoxide
8
cxoy suboxides
8
decomposition
5
temperature decomposition
4
decomposition polymeric
4
carbon
4
monoxide pressures
4
pressures 120
4

Similar Publications

Non-equilibrium molecular dynamics (NEMD) simulations reveal the existence of a spontaneous heat current (SHC) in the absence of a temperature gradient and demonstrate ultra-high thermal rectification in asymmetric trapezoid-shaped graphene. These unique properties have potential applications in power generation and thermal circuits, functioning as thermal diodes. Our findings also show the presence of negative and zero thermal conductivity in this system.

View Article and Find Full Text PDF

Coupling of single nanodiamonds hosting SiV color centers to plasmonic double bowtie microantennas.

Nanotechnology

January 2025

Experimentalphysik, Saarland University, Fachrichtung 7.2, Campus E2.6, 66123 Saarbruecken, Saarbrucken, Saarland, 66123, GERMANY.

Color centers are promising single-photon emitters owing to their operation at room temperature and high photostability. In particular, using nanodiamonds as a host material is of interest for sensing and metrology. Furthermore, being a solid-state system allows for incorporation to photonic systems to tune both the emission intensity and photoluminescence spectrum and therefore adapt the individual color center to desired properties.

View Article and Find Full Text PDF

A room temperature rechargeable Li-LiNO battery with high capacity.

Proc Natl Acad Sci U S A

January 2025

Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.

Lithium-ion batteries (LIBs) have become advanced energy storage technologies; however, specific capacity remains limited by the active materials in cathodes. Here, we report Li-LiNO batteries (LNBs) where LiNO in electrolyte serves as both active materials and ion conductor at room temperature. LNBs operate on a highly reversible redox between NO and NO, which results in an impressive areal capacity of 19 mAh cm at a plateau voltage of 1.

View Article and Find Full Text PDF

Volcanic provinces are among the most active but least well understood landscapes on Earth. Here, we show that the central Cascade arc, USA, exhibits systematic spatial covariation of topography and hydrology that are linked to aging volcanic bedrock, suggesting systematic controls on landscape evolution. At the Cascade crest, a locus of Quaternary volcanism, water circulates deeply through the upper [Formula: see text]1 km of crust but transitions to shallow and dominantly horizontal flow as rocks age away from the arc front.

View Article and Find Full Text PDF

Arctic soil carbon insulation averts large spring cooling from surface-atmosphere feedbacks.

Proc Natl Acad Sci U S A

January 2025

Laboratoire de Géologie, Ecole Normale Supérieure, CNRS, Institut Pierre-Simon Laplace, Université Paris Sciences et Lettres, Paris 75005, France.

The insulative properties of soil organic carbon (SOC) and surface organic layers (moss, lichens, litter) regulate surface-atmosphere energy exchanges in the Arctic through a coupling with soil temperatures. However, a physical description of this process is lacking in many climate models, potentially biasing their high-latitude climate predictions. Using a coupled surface-atmosphere model, we identified a strong feedback loop between soil insulation, surface air temperature, and snowfall.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!