Touch generated by our voluntary movements is attenuated both at the perceptual and neural levels compared with touch of the same intensity delivered to our body by another person or machine. This somatosensory attenuation phenomenon relies on the integration of somatosensory input and predictions about the somatosensory consequences of our actions. Previous studies have reported increased somatosensory attenuation in elderly people, proposing an overreliance on sensorimotor predictions to compensate for age-related declines in somatosensory perception; however, recent results have challenged this direct relationship. In a preregistered study, we used a force-discrimination task to assess whether aging increases somatosensory attenuation and whether this increase is explained by decreased somatosensory precision in elderly individuals. Although 94% of our sample ( = 108, 21-77 yr old) perceived their self-generated touches as weaker than externally generated touches of identical intensity (somatosensory attenuation) regardless of age, we did not find a significant increase in somatosensory attenuation in our elderly participants (65-77 yr old), but a trend when considering only the oldest subset (69-77 yr old). Moreover, we did not observe a significant age-related decline in somatosensory precision or a significant relationship of age with somatosensory attenuation. Together, our results suggest that aging exerts a limited influence on the perception of self-generated and externally generated touch and indicate a less direct relationship between somatosensory precision and attenuation in the elderly individuals than previously proposed. Self-generated touch is attenuated compared with externally generated touch of identical intensity. This somatosensory attenuation has been previously shown to be increased in elderly participants, but it remains unclear whether it is related to age-related somatosensory decline. In our preregistered study, we observed a trend for increased somatosensory attenuation in our oldest participants (≥69 yr), but we found no evidence of an age-related decline in somatosensory function or a relationship of age with somatosensory attenuation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642979 | PMC |
http://dx.doi.org/10.1152/jn.00145.2023 | DOI Listing |
Sci Rep
January 2025
Neurocomputation and Neuroimaging Unit (NNU), Freie Universität Berlin, Berlin, Germany.
We are not only passively immersed in a sensorial world, but we are active agents that directly produce stimulations. Understanding what is unique about sensory consequences can give valuable insight into the action-perception-cycle. Sensory attenuation is the phenomenon that self-produced stimulations are perceived as less intense compared to externally-generated ones.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Department of Molecular Oral Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, 770-8504, Tokushima, Japan. Electronic address:
The balance of activity between glutamatergic and GABAergic networks is particularly important for oscillatory neural activities in the brain. Here, we investigated the roles of GABA receptors in network oscillation in the oral somatosensory cortex (OSC), focusing on NMDA receptors. Neural oscillation at the frequency of 8-10 Hz was elicited in rat brain slices after caffeine application.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
The selective elimination of inappropriate projections is essential for sculpting neural circuits during development. The class IV dendritic arborization (C4da) sensory neurons of Drosophila remodel the dendritic branches during metamorphosis. Glial cells in the central nervous system (CNS), are required for programmed axonal pruning of mushroom body (MB) γ neurons during metamorphosis in Drosophila.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, 12 Smetna Str., Krakow 31-343, Poland. Electronic address:
Neuropathic pain is a disorder affecting the somatosensory nervous system. However, this condition is also characterized by significant neuroinflammation, primarily involving CNS-resident non-neuronal cells. A promising target for developing new analgesics is histamine H receptor (HR); thus, we aimed to determine the influence of a novel HR antagonist/inverse agonist, E-98 (1-(7-(4-chlorophenoxy)heptyl)-3-methylpiperidine), on pain symptoms and glia activation in model of neuropathic pain in male mice (chronic constriction injury to the sciatic nerve).
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
Neuropathic pain is a type of pain caused by an injury or disease of the somatosensory nervous system. Currently, there is still absence of effective therapeutic drugs for neuropathic pain, so developing new therapeutic drugs is urgently needed. In the present study, we observed the effect of Comp 6d, a novel silent information regulator 1 (SIRT1) activator synthesized in our laboratory, on neuropathic pain and investigated the mechanisms involved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!