In the present study, TiC-Fe cermets were fabricated through selective laser melting (SLM) for the first time employing pulse wave using a pulse shaping technique and regular laser pulse wave. Two samples were fabricated each with adapting pulse shaping technique and regular laser pulse wave with varied laser peak power and exposure time to obtain an optimized parameter. The pulse shaping technique proves to be an optimal method for fabrication of the TiC-Fe-based cermet. The effect of the laser peak power and pulse shaping on the microstructure development was investigated through scanning electron microscopy and X-ray diffraction analysis. Two-phased microstructures revealed the distribution of TiC and Fe. A maximum hardness and fracture toughness of 1010 ± 65 MPa and 16.3 ± 1.7 MPa m, respectively, were observed for the pulsed-shaped samples illustrating that pulse shaping can be an effective way to avoid cracking in brittle materials processed by SLM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440667PMC
http://dx.doi.org/10.1089/3dp.2021.0221DOI Listing

Publication Analysis

Top Keywords

pulse shaping
24
laser pulse
12
pulse wave
12
shaping technique
12
pulse
9
selective laser
8
laser melting
8
shaping microstructure
8
technique regular
8
regular laser
8

Similar Publications

A combination of femtosecond stimulated Raman scattering and surface-enhanced Raman scattering, termed surface-enhanced stimulated Raman scattering (SE-FSRS), was proposed to leverage both temporal precision and sensitivity for advanced molecular dynamics analysis. During the initial successful implementations of this approach, unexpected spectral distortions were observed, and several potential explanations were proposed. Further progress in this novel technique and its broader implementation requires a profound understanding of the factors influencing the shape of the registered spectra and the underlying mechanisms.

View Article and Find Full Text PDF

RF Heating Effects in CEST NMR with Hyperpolarized 129Xe Considering Different Spin Exchange Kinetics and Saturation Schemes.

Chemphyschem

January 2025

Deutsches Krebsforschungszentrum, Translational Molecular Imaging, Im Neuenheimer Feld 223, 69120, Heidelberg, GERMANY.

Chemical exchange saturation transfer (CEST) improves the sensitivity of NMR but depending on the spin exchange kinetics, it can require substantial RF energy deposition to label magnetization. Potential side effects like RF-induced heating may occur and must be monitored. Here, we explore the parameter space considering not only undesired heating but efficient CEST build-up (depolarization rate), spectral resolution (line width), and subsequent effects like changes in chemical shifts of CEST responses must be considered, too.

View Article and Find Full Text PDF

Characterization of a simple gas expansion ion source for intense pulses of subthermal molecular ions.

Rev Sci Instrum

January 2025

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany.

We describe a simple gas expansion ion source based on static discharge voltages and a commercially available pulsed valve. The discharge is initiated by the gas pulse itself between two high voltage electrodes, without the need for fast voltage switches or complex timing schemes. The ion source very reliably produces intense bursts of molecular ions (with currents exceeding 100 μA during the pulse-on phase) with only minor pulse-to-pulse variations in intensity and pulse shape.

View Article and Find Full Text PDF

Purpose: To optimize a 100 ms pulse for producing CEST MRI contrast and evaluate in mice.

Methods: A gradient ascent algorithm was employed to generate a family of 100 point, 100 ms pulses for use in CEST pulse trains (proton resonance enhancement for CEST imaging and shift exchange). Gradient ascent optimizations were performed for exchange rates = 500, 1500, 2500, 3500, and 4500 s; and labile proton offsets (Δω) = 9.

View Article and Find Full Text PDF

In holometabolous insects, critical weight (CW) attainment triggers pupation and metamorphosis, but its mechanism remains unclear in non-model organisms like mosquitoes. Here, we investigate the role of 20-hydroxyecdysone (20E) in CW assessment and pupation timing in Aedes albopictus and Ae. aegypti, vectors of arboviruses including dengue and Zika.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!