The use of hydroponics to cultivate economic crops is an emerging agricultural practice in Nigeria. There is, however, a paucity of information on the economic viability and valuation of the production systems. This study investigated hydroponics' profitability and economic viability under small- and medium-scale production systems. The economic viability of ten hydroponic farms were evaluated using the financial metrics: net present value (NPV), internal rate of return (IRR), benefit-cost ratio (BCR), and sensitivity analysis. Sensitivity analysis based on positive and negative changes in the running cost and gross annual revenue was adopted to measure the robustness of the production method. The positive NPVs of the small-scale farmer (€42,895) and medium-scale farmer (€331,465) at a 15% discount rate show that both production scales are economically viable. The ten-year IRR of both production scales was about 83%. Similarly, the BCR showed that both the small-scale farmers (5.07) and the medium-scale farmers (4.91) are significantly profitable. In the sensitivity analysis, the small-scale farmers were more sensitive to recurrent 5% changes in the running cost at the 13% threshold. On the other hand, medium-scale farmers were less sensitive with a threshold value of 58.4%. Similarly, small-scale farmers are more sensitive to a 15% reduction in the gross annual revenue, with a negative net return of -€956. It is imperative to state that, though starting an investment in hydroponics requires a high initial investment, medium-scale farmers would be less sensitive to changes in the running cost of production in the face of uncertainties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440523 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e18979 | DOI Listing |
Chem Sci
January 2025
J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University College Station TX 77843 USA
This perspective work examines the current advancements in integrated CO capture and electrochemical conversion technologies, comparing the emerging methods of (1) electrochemical reactive capture (eRCC) though amine- and (bi)carbonate-mediated processes and (2) direct (flue gas) adsorptive capture and conversion (ACC) with the conventional approach of sequential carbon capture and conversion (SCCC). We initially identified and discussed a range of cell-level technological bottlenecks inherent to eRCC and ACC including, but not limited to, mass transport limitations of reactive species, limitation of dimerization, impurity effects, inadequate generation of CO to sustain industrially relevant current densities, and catalyst instabilities with respect to some eRCC electrolytes, amongst others. We followed this with stepwise perspectives on whether these are considered intrinsic challenges of the technologies - otherwise recommendations were disclosed where appropriate.
View Article and Find Full Text PDFJ Mark Access Health Policy
March 2025
BHF Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK;
This study illustrates the utility of a mixed-methods approach in assessing the value of an example novel technology-biosensor-integrated self-reporting arteriovenous grafts (smart AVGs). Currently in preclinical development, the device will detect arteriovenous graft stenosis (surveillance-only use case) and treat stenosis (interventional use case). The approach to value assessment adopted in this study was multifaceted, with one stage informing the next and comprised a stakeholder engagement with clinical experts to explore the device's clinical value, a cost-utility analysis (CUA) from a US Medicare perspective to estimate pricing headroom, and an investment model estimating risk-adjusted net present value analysis (rNPVs) to determine commercial viability.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemical Engineering, University of Almería, Carretera de Sacramento s/n 04120 La Cañada de San Urbano, Almería, Spain.
This work studies the influence of flue gas composition, its moisture and ash content, on the efficiency of a CO adsorption/desorption process to capture the CO from flue gases along with its subsequent reuse in greenhouse CO enrichment (Patent ES2514090). The influence of the inlet flow rate, moisture, and ash content were analysed. The experimental conditions were based on those that are achievable under real operating conditions, namely an inlet flow rate from 1.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary.
Methylenebisphosphonic derivatives including hydroxy-methylenebisphosphonic species may be of potential biological activity, and a part of them is used in the treatment of bone diseases. Methylenebisphosphonates may be obtained by the Michaelis-Arbuzov reaction of suitably α-substituted methylphosphonates and trialkyl phosphites or phosphinous esters, while the hydroxy-methylene variations are prepared by the Pudovik reaction of α-oxophosphonates and different >P(O)H reagents, such as diethyl phosphite and diarylphosphine oxides. After converting α-hydroxy-benzylphosphonates and -phosphine oxides to the α-halogeno- and α-sulfonyloxy derivatives, they were utilized in the Michaelis-Arbuzov reaction with trialkyl phosphites and ethyl diphenylphosphinite to afford the corresponding bisphosphonate, bis(phosphine oxide) and phosphonate-phosphine oxide derivatives.
View Article and Find Full Text PDFMolecules
January 2025
Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111 Budapest, Hungary.
A series of α-hydroxy-alkylphosphonates and α-hydroxy-alkylphosphine oxides were synthesized by the Pudovik reaction of acetaldehyde and acetone with dialkyl phosphites or diarylphosphine oxides. The additions were performed in three different ways: in liquid phase using triethylamine as the catalyst (1), on the surface of AlO/KF solid catalyst (2), or by a MW-assisted NaCO-catalyzed procedure (3). In most of the cases, our methods were more efficient and more robust than those applied in the literature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!