A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neural crest cells give rise to non-myogenic mesenchymal tissue in the adult murid ear pinna. | LitMetric

Despite being a major target of reconstructive surgery, development of the external ear pinna remains poorly studied. As a craniofacial organ highly accessible to manipulation and highly conserved among mammals, the ear pinna represents a valuable model for the study of appendage development and wound healing in the craniofacial complex. Here we provide a cellular characterization of late gestational and postnatal ear pinna development in and and demonstrate that ear pinna development is largely conserved between these species. Using mice we find that connective tissue fibroblasts, elastic cartilage, dermal papilla cells, dermal sheath cells, vasculature, and adipocytes in the adult pinna are derived from cranial crest. In contrast, we find that skeletal muscle and hair follicles are not derived from neural crest cells. Cellular analysis using the naturally occurring mouse mutant shows that elastic cartilage does not develop properly in distal pinna due to impaired chondroprogenitor proliferation. Interestingly, while chondroprogenitors develop in a mostly continuous sheet, the boundaries of cartilage loss in the mutant strongly correlate with locations of vasculature-conveying foramen. Concomitant with loss of elastic cartilage we report increased numbers of adipocytes, but this seems to be a state acquired in adulthood rather than a developmental abnormality. In addition, chondrogenesis remains impaired in the adult mid-distal ear pinna of these mutants. Together these data establish a developmental basis for the study of the ear pinna with intriguing insights into the development of elastic cartilage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441307PMC
http://dx.doi.org/10.1101/2023.08.06.552195DOI Listing

Publication Analysis

Top Keywords

ear pinna
28
elastic cartilage
16
pinna
9
neural crest
8
crest cells
8
pinna development
8
ear
7
development
5
cartilage
5
cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!