Objective: Low back pain (LBP) is the leading cause of global disability and is thought to be driven primarily by intervertebral disc (IVD) degeneration (DD). Persistent upregulation of catabolic enzymes and inflammatory mediators have been associated with severe cases of DD. Nuclear factor kappa B (NF-κB) is a master transcription regulator of immune responses and is over expressed during inflammatory-driven musculoskeletal diseases, including DD. However, its role in triggering DD is unknown. Therefore, this study investigated the effect of NF-κB pathway over-activation on IVD integrity and DD pathology.

Methods: Using skeletally mature mouse model, we genetically targeted IVD cells for canonical NF-κB pathway activation via expression of a constitutively active form of inhibitor of κB kinase B (IKKβ), and assessed changes in IVD cellularity, structural integrity including histology, disc height, and extracellular matrix (ECM) biochemistry, biomechanics, expression of inflammatory, catabolic, and neurotropic mediators, and changes in macrophage subsets, longitudinally up to 6-months post activation.

Results: Prolonged NF-κB activation led to severe structural degeneration, with a loss of glycosaminoglycan (GAG) content and complete loss of nucleus pulposus (NP) cellularity. Structural and compositional changes decreased IVD height and compressive mechanical properties with prolonged NF-κB activation. These alterations were accompanied by increases in gene expression of inflammatory molecules ( ), chemokines ( , ), catabolic enzymes ( ), and neurotrophic factors ( , ) within IVD tissue. Increased recruitment of activated macrophages exhibited a greater abundance of pro-inflammatory (CD38 ) over inflammatory-resolving (CD206 ) macrophage subsets in the IVD, with temporal changes in the relative abundance of macrophage subsets over time, providing evidence for temporal regulation of macrophage polarization in DD where macrophages participate in resolving the inflammatory cascade but promote fibrotic transformation of the IVD matrix. We further show that NF-κB driven secretory factors from IVD cells increase macrophage migration and inflammatory activation, and that the secretome of inflammatory-resolving macrophages mitigates effects of NF-κB overactivation.

Conclusion: Overall the observed results suggest prolonged NF-κB activation can induce severe DD, acting through increases in inflammatory cytokines, chemotactic proteins, catabolic enzymes, and the recruitment and inflammatory activation of a macrophage cell populations, that can be mitigated with inflammatory-resolving macrophage secretome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441339PMC
http://dx.doi.org/10.1101/2023.08.07.552274DOI Listing

Publication Analysis

Top Keywords

catabolic enzymes
12
macrophage subsets
12
prolonged nf-κb
12
nf-κb activation
12
ivd
9
nuclear factor
8
factor kappa
8
intervertebral disc
8
macrophage
8
nf-κb
8

Similar Publications

In this study, new cinnamic acid linked to triazole acetamide derivatives was synthesized and evaluated for anti-Alzheimer and anti-melanogenesis activities. The structural elucidation of all analogs was performed using different analytical techniques, including H-NMR, C-NMR, mass spectrometry, and IR spectroscopy. The synthesized compounds were assessed in vitro for their inhibitory activities against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase enzymes.

View Article and Find Full Text PDF

Fructose-1,6-bisphosphatase 1 (FBP1) is a key gluconeogenic enzyme that plays complex and context-dependent roles in cancer biology. This review comprehensively examines FBP1's dual functions as both a tumor suppressor and an oncogene across various cancer types. In many cancers, such as hepatocellular carcinoma, clear cell renal cell carcinoma, and lung cancer, downregulation of FBP1 contributes to tumor progression through metabolic reprogramming, promoting glycolysis, and altering the tumor microenvironment.

View Article and Find Full Text PDF

Molecular mechanisms of libido influencing semen quality in geese through the hypothalamic-pituitary-testicular-external genitalia axis.

Poult Sci

December 2024

Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China. Electronic address:

Libido plays a crucial role in influencing semen quality, yet the underlying regulatory mechanisms remain unclear. As a central axis in male goose reproduction, the hypothalamic-pituitary-testicular-external genitalia (HPTE) axis may contribute to the regulation of this process. In this study, we established a rating scale for goose libido based on average number of massages to erection (ANM) and the erection type, and evaluated semen quality across the entire flock.

View Article and Find Full Text PDF

Bitter acids (BA) are main component of Humulus lupulus L. (hops). They are known for beer brewing and have various biological and pharmacological properties, especially the bone-protective effect confirmed by our previous in vivo study.

View Article and Find Full Text PDF

Background: Nitrogen (N) deposition has become a major driving factor affecting the balance of terrestrial ecosystems, changing the soil environment, element balance and species coexistence relationships, driving changes in biodiversity and ecosystem structure and function. Human-induced nitrogen input leads to a high NH/ NO ratio in soil. However, relatively few studies have investigated the effects of different nitrogen sources on forest plant-microbial symbionts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!