Background: Developing non-invasive delivery platforms with a high level of structural and/or functional similarity to biological membranes is highly desirable to reduce toxicity and improve targeting capacity of nanoparticles. Numerous studies have investigated the impacts of physicochemical properties of engineered biomimetic nanoparticles on their interaction with cells, yet technical difficulties have led to the search for better biomimetics, including vesicles isolated directly from live cells. Cell-derived giant plasma membrane vesicles (GPMVs), in particular, offer a close approximation of the intact cell plasma membrane by maintaining the latter's compositional complexity, protein positioning in a fluid-mosaic pattern, and physical and mechanical properties. Thus, to overcome technical barriers of prior nanoparticle delivery approaches, we aimed to develop a novel method using GPMVs to encapsulate a variety of engineered nanoparticles, then use these core-shell, nanoparticle-GPMV vesicle structures to deliver cargo to other cells.

Results: The GPMV system in this study was generated by chemically inducing vesiculation in A549 cells, a model human alveolar epithelial line. These cell-derived GPMVs retained encapsulated silica nanoparticles (50 nm diameter) for at least 48 hours at 37 °C. GPMVs showed nearly identical lipid and protein membrane profiles as the parental cell plasma membrane, with or without encapsulation of nanoparticles. Notably, GPMVs were readily endocytosed in the parental A549 cell line as well as the human monocytic THP-1 cell line. Higher cellular uptake levels were observed for GPMV-encapsulated nanoparticles compared to control groups, including free nanoparticles. Further, GPMVs delivered a variety of nanoparticles to parental cells with reduced cytotoxicity compared to free nanoparticles at concentrations that were otherwise significantly toxic.

Conclusions: We have introduced a novel technique to load nanoparticles within the cell plasma membrane during the GPMV vesiculation process. These GPMVs are capable of (a) encapsulating different types of nanoparticles (including larger and not highly-positively charged bodies that have been technically challenging cargoes) using a parental cell uptake technique, and (b) improving delivery of nanoparticles to cells without significant cytotoxicity. Ultimately, endogenous surface membrane proteins and lipids can optimize the physicochemical properties of cell membrane-derived vesicles, which could lead to highly effective cell membrane-based nanoparticle/drug delivery systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441347PMC
http://dx.doi.org/10.1101/2023.08.06.552132DOI Listing

Publication Analysis

Top Keywords

plasma membrane
20
nanoparticles
12
cell plasma
12
membrane vesicles
8
physicochemical properties
8
cell
8
parental cell
8
free nanoparticles
8
membrane
7
gpmvs
7

Similar Publications

Time-resolved fluorescence immunochromatographic test strips (TRFIS) was developed for the rapid detection of hepatocellular carcinoma (HCC)-specific plasma exosomes (hExos) by targeting the hExo-surface membrane protein glypican-3 (GPC3). The GPC3-TRFIS could directly detect plasma exosomes without the isolation and purification process, and the whole immunoassay could be completed within 15 min. The visual detection limit of GPC3-TRFIS was 3.

View Article and Find Full Text PDF

Oncolytic therapy, inducing cell death via cell membrane lysis, holds considerable promise in cancer treatment. However, achieving precise control over the structure and function of oncolytic materials for highly selective oncolytic therapy is a key challenge in the context of the subtle differences between tumor and normal tissues/cells. Herein, we report the development of pH-ultrasensitive oncolytic polyesters (pOPs) with an alternating sequence of ionizable and hydrophobic groups.

View Article and Find Full Text PDF

This study presents the preparation and electrochemical testing of sulfonated styrene-grafted poly(vinylidene fluoride) (pVDF) copolymers as proton exchange membranes (PEMs) for semi-organic redox flow batteries (RFBs) based on 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/bromine. The copolymers are synthesized via a two-step procedure, involving i) atom transfer radical polymerization of styrene (Sty) for the grafting to the pVDF backbone and ii) the sulfonation of the polystyrene grafted side chains. Copolymers with different amounts of sulfonated styrene (SSty) in the side chains (i.

View Article and Find Full Text PDF

Ca signaling in vascular smooth muscle and endothelial cells in blood vessel remodeling: a review.

Inflamm Regen

December 2024

Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.

Vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) act together to regulate blood pressure and systemic blood flow by appropriately adjusting blood vessel diameter in response to biochemical or biomechanical stimuli. Ion channels that are expressed in these cells regulate membrane potential and cytosolic Ca concentration ([Ca]) in response to such stimuli. The subsets of these ion channels involved in Ca signaling often form molecular complexes with intracellular molecules via scaffolding proteins.

View Article and Find Full Text PDF

Role of PCBP2 in regulating nanovesicles loaded with curcumin to mitigate neuroferroptosis in neural damage caused by heat stroke.

J Nanobiotechnology

December 2024

Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, No. 359, Youhao North Road, Urumqi, Xinjiang, China.

Objective: This study aims to elucidate the mechanisms by which nanovesicles (NVs) transport curcumin(CUR) across the blood-brain barrier to treat hypothalamic neural damage induced by heat stroke by regulating the expression of poly(c)-binding protein 2 (PCBP2).

Methods: Initially, NVs were prepared from macrophages using a continuous extrusion method. Subsequently, CUR was loaded into NVs using sonication, yielding engineered cell membrane Nanovesicles loaded with curcumin (NVs-CUR), which were characterized and subjected to in vitro and in vivo tracking analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!