Gut microbiota play an important role in the gut ecology and development of pigs, which is always regulated by nutrients. This study investigated the effect of L-Citrulline on growth performance, carcass characteristics, and its potential regulatory mechanism. The results showed that 1% dietary L-Citrulline supplementation for 52 days significantly increased final weight, liveweight gain, carcass weight, and average backfat and markedly decreased drip loss ( < 0.05) of finishing pigs compared with the control group. Microbial analysis of fecal samples revealed a marked increase in α-diversity and significantly altered composition of gut microbiota in finishing pigs in response to L-Citrulline. In particular, these altered gut microbiota at the phylum and genus level may be mainly involved in the metabolic process of carbohydrate, energy, and amino acid, and exhibited a significant association with final weight, carcass weight, and backfat thickness. Taken together, our data revealed the potential role of L-Citrulline in the modulation of growth performance, carcass characteristics, and the meat quality of finishing pigs, which is most likely associated with gut microbiota.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442155 | PMC |
http://dx.doi.org/10.3389/fmicb.2023.1209389 | DOI Listing |
Nutrients
November 2024
Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Solna, Sweden.
The prevalence of cardiovascular-kidney-metabolic (CKM) syndrome is increasing rapidly, and cardiovascular complications pose significant risks in individuals with kidney disease and metabolic dysfunction. Understanding the mechanisms of CKM disorders is crucial, as is the discovery of novel preventive treatments. This study aimed to examine the therapeutic effects of a specially formulated nitric oxide-enhancing food additive in a mouse model of CKM syndrome induced by unilateral nephrectomy (UNX) in combination with chronic Western diet (WD) feeding.
View Article and Find Full Text PDFAnim Nutr
December 2024
State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
This study aimed to develop a compensatory growth model using growing beef cattle by changing dietary protein and to investigate the underlying mechanisms of compensatory protein deposition in muscle tissue. Twelve Charolais bulls were randomly assigned to one of two groups with two periods: 1) a control group (CON) fed a 13% crude protein (CP) diet for 6 weeks; 2) a treatment group (REC) fed a 7% CP diet for 4 weeks (restriction period) and fed a 13% CP diet in the following 2 weeks (re-alimentation period). Growth performance, digestibility, nitrogen balance, targeted metabolomics of amino acids (AA) in plasma, and transcriptional profiling in muscle tissue were analyzed.
View Article and Find Full Text PDFMedicina (Kaunas)
November 2024
Center of Endocrinology, Metabolism, Genetic/Genomics and Molecular Therapy, Vietnam National Children's Hospital, 18/879 La Thanh, Dong Da, Hanoi 11512, Vietnam.
: Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome (HHH; OMIM 238970) is one of the rare urea cycle disorders. Ornithine carrier 1 deficiency causes HHH syndrome, characterized by failure of mitochondrial ornithine uptake, hyperammonemia, and accumulation of ornithine and lysine in the cytoplasm. The initial presentation and time of diagnosis in HHH highly varies.
View Article and Find Full Text PDFSci Rep
October 2024
Department of Kinesiology, Louisiana State University, Baton Rouge, LA, USA.
Reduced nitric oxide (NO) bioavailability is a pathological link between obesity and Alzheimer's disease (AD). Obesity-associated metabolic and mitochondrial bioenergetic dysfunction are key drivers of AD pathology. The hypothalamus is a critical brain region during the development of obesity and dysfunction is an area implicated in the development of AD.
View Article and Find Full Text PDFJ Int Soc Sports Nutr
December 2024
Georgia State University, Department of Kinesiology & Health, Atlanta, GA, USA.
Background: There is growing interest in the use of nutrition and dietary supplements to optimize training and time-trial (TT) performance in cyclists. Separately, quercetin (QCT) and citrulline (CIT) have been used as ergogenic aids to improve oxygen (VO) kinetics, perceived effort, and cycling TT performance. However, whether the combination of QCT and CIT can provide additive benefits and further enhance cycling performance production is currently unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!