Electroorganic synthesis is generally considered to be a green alternative to conventional redox reactions. Electrochemical reductions, however, are less advantageous in terms of sustainability, as sacrificial metal anodes are often employed. Divided cell operation avoids contact of the reduction products with the anode and allows for convenient solvent oxidation, enabling metal free greener electrochemical reductions. However, the ion exchange membranes required for divided cell operation on a commercial scale are not amenable to organic solvents, which hinders their applicability. Herein, we demonstrate that electrochemical reduction of oxidatively sensitive compounds can be carried out in an undivided cell without sacrificial metal anodes by controlling the mass transport to a small surface area electrode. The concept is showcased by an electrochemical method for the reductive cleavage of aryl disulfides. Fine tuning of the electrode surface area and current density has enabled the preparation of a wide variety of thiols without formation of any oxidation side products. This strategy is anticipated to encourage further research on greener, metal free electrochemical reductions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202302664DOI Listing

Publication Analysis

Top Keywords

electrochemical reductions
12
electrochemical reduction
8
undivided cell
8
sacrificial metal
8
metal anodes
8
divided cell
8
cell operation
8
metal free
8
surface area
8
electrochemical
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!