Background: Type 2 diabetes-associated cognitive dysfunction (DCD) is a chronic complication of diabetes that has gained international attention. The medicinal compound Banxia Xiexin Decoction (BXXXD) from traditional Chinese medicine (TCM) has shown potential in improving insulin resistance, regulating endoplasmic reticulum stress (ERS), and inhibiting cell apoptosis through various pathways. However, the specific mechanism of action and medical value of BXXXD remain unclear.

Methods: We utilized TCMSP databases to screen the chemical constituents of BXXXD and identified DCD disease targets through relevant databases. By using Stitch and String databases, we imported the data into Cytoscape 3.8.0 software to construct a protein-protein interaction (PPI) network and subsequently identified core targets through network topology analysis. The core targets were subjected to Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The results were further validated through in vitro experiments.

Results: Network pharmacology analysis revealed the screening of 1490 DCD-related targets and 190 agents present in BXXXD. The topological analysis and enrichment analysis conducted using Cytoscape software identified 34 core targets. Additionally, GO and KEGG pathway analyses yielded 104 biological targets and 97 pathways, respectively. BXXXD exhibited its potential in treating DCD by controlling synaptic plasticity and conduction, suppressing apoptosis, reducing inflammation, and acting as an antioxidant. In a high glucose (HG) environment, the expression of JNK, Foxo3a, SIRT1, ATG7, Lamp2, and LC3 was downregulated. BXXXD intervention on HT22 cells potentially involved inhibiting excessive oxidative stress, promoting neuronal autophagy, and increasing the expression levels of JNK, SIRT1, Foxo3a, ATG7, Lamp2, and LC3. Furthermore, the neuroprotective effect of BXXXD was partially blocked by SP600125, while quercetin enhanced the favorable role of BXXXD in the HG environment.

Conclusion: BXXXD exerts its effects on DCD through multiple components, targets, levels, and pathways. It modulates the JNK/SIRT1/Foxo3a signaling pathway to mitigate autophagy inhibition and apoptotic damage in HT22 cells induced by HG. These findings provide valuable perspectives and concepts for future clinical trials and fundamental research.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573409920666230822110258DOI Listing

Publication Analysis

Top Keywords

ht22 cells
12
core targets
12
bxxxd
9
banxia xiexin
8
xiexin decoction
8
jnk/sirt1/foxo3a signaling
8
signaling pathway
8
identified core
8
kegg pathway
8
pathway analyses
8

Similar Publications

KRS-1, a biocompatible nickel(II) complex, is introduced as a potent fluorescent probe for PrP fibrillar aggregates. KRS-1 shows a 15-fold enhancement in PL intensity and detects all stages of PrP aggregation. Fluorescence microscopy confirms its efficacy in identifying PrP fibrillar aggregates in HT-22 cells.

View Article and Find Full Text PDF

Melittin (MEL) is the main bioactive component of bee venom and has been reported to have various pharmacological effects. This study investigates the protective effect of MEL on MPP-injured HT22 cells and the possible mechanisms involved. We treated the cells with 4 mM MPP for 24 h to induce a cellular injury model.

View Article and Find Full Text PDF

Novel neo-clerodane diterpenoids from Teucrium quadrifarium and their anti-ferroptosis effect.

Nat Prod Bioprospect

January 2025

State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People's Republic of China.

Teucrifarides A-D (1-4), four previously unreported neo-clerodane-type diterpenoids, combined with sixteen known analogs (5-20), were purified from Teucrium quadrifarium. The absolute forma of compounds 1-4 were determined via spectroscopic and ECD calculation methods, together with X-ray crystallography experiments. Among them, compound 1 possessed a 5,20-epoxy ring featuring a unique cage-like 12-oxatricyclo [5.

View Article and Find Full Text PDF

Discovery of the therapeutic potential of naltriben against glutamate-induced neurotoxicity.

Neurochem Int

January 2025

Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Hwarangro 14 gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Hwarangro 14 gil, Seongbuk-gu, Seoul 02792, Republic of Korea.

Glutamate-induced neuronal death is associated with neurodegeneration including cerebral ischemia. Several μ-opioid receptor antagonists exhibit a neuroprotective activity and have been considered as a potential therapeutic option for neurodegenerative disorders. For the first time, our current study unveiled the neuroprotective activity of selective δ-opioid receptor antagonists.

View Article and Find Full Text PDF

Five racemic phthalides from the aerial parts of Lycopodiastrum casuarinoides and their neuroprotective activities.

Phytochemistry

January 2025

Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China. Electronic address:

Five racemic phthalides (1-5), including four undescribed phthalides monomers [(+)-1, (+)-2, (-)-2 and (-)-3], four undescribed phthalide dimers [(+)-4, (-)-4, (+)-5 and (-)-5], together with two known compounds [(-)-1 and (+)-3], were isolated from the aerial parts of Lycopodistrum casuarinoides. Their chemical structures were delineated by extensive spectroscopic data (UV, 1D/2D NMR, HRESIMS), in combination with the comparison of the experimental and calculated electronic circular dichroism spectra, calculated spin-spin coupling constants, and calculated NMR. All compounds were reported from Lycopodiaceae family for the first time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!