Introduction: Recent studies have found that circular RNA is an abundant RNA species that belongs to part of the competing endogenous RNA network (ceRNA), which was proven to play an important role in the development, diagnosis and progress of diseases. However, the function of circRNAs in imatinib resistance in Gastrointestinal stromal tumor (GIST) are poorly understood so for. The present study aimed to screen and predict the potential circRNAs in imatinib resistance of GIST using microarray analysis.

Methods: We determined the expression of circular RNAs in paired normal gastric tissues (N), primary GIST (gastrointestinal stromal tumor) tissues (YC) and imatinib mesylate secondary resistance GIST tissues (C) with microarray and predicted 8677 dysregulated circular RNAs.

Results: Compared with the YC group, we identified 15 circRNAs that were up-regulated and 8 circRNAs that were down-regulated in the C group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that these host linear transcripts that differentially express circular RNAs are involved in many key biological pathways, predicting the potential tumor-genesis and drug resistance mechanismrelated to HIF-1 pathway, later we draw the cirRNA-miRNA-mRNA network involved in the HIF-1 pathway and found several dysregulated circRNAs and the relationship between circRNA-miRNAs-mRNA, such as circRNA_06551, circRNA_14668, circRNA_04497, circRNA_08683, circRNA_09923(Green, down-regulation) and circRNA_23636, circRNA_15734 (Red, up-regulation).

Conclusion: Taken together, we identified a panel of dysregulated circRNAs that may be potential biomarkers even therapy relevant to the GIST, especially imatinib secondary resistance GIST.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327759PMC
http://dx.doi.org/10.2174/1386207326666230822100024DOI Listing

Publication Analysis

Top Keywords

circular rnas
12
imatinib resistance
12
gastrointestinal stromal
12
stromal tumor
12
resistance gist
12
resistance gastrointestinal
8
circrnas imatinib
8
secondary resistance
8
hif-1 pathway
8
dysregulated circrnas
8

Similar Publications

We present the complete mitochondrial genome of from China. The mitogenome of is circular, AT-rich (75.3%), and 15,898 bp in length.

View Article and Find Full Text PDF

Aim: Breast cancer (BC) is the most frequently diagnosed malignancy worldwide, necessitating continued research into its molecular mechanisms. Circular RNAs (circRNAs) are increasingly recognized for their role in various cancers, including BC. This study explores the role of circRNA kinesin family member 4A (circKIF4A) in BC progression and its underlying molecular mechanisms.

View Article and Find Full Text PDF

Nile blue has been widely used in histological staining, fluorescence labeling, and DNA probing, with its intercalation behavior into the DNA helix being well documented. Here, we present a comprehensive investigation to address a current knowledge gap regarding the binding properties of Nile blue to two types of double-stranded RNA (dsRNA): poly(A·U) and poly(I·C), using various biophysical techniques. Absorption and fluorescence spectroscopic studies suggest a significant binding interaction between Nile blue and the two designated dsRNAs, specifically indicating an intercalation binding mode with poly(A·U) and demonstrating a noticeably higher binding affinity compared to poly(I·C).

View Article and Find Full Text PDF

A Smart mRNA-Initiated Theranostic Multi-shRNA Nanofactory for Precise and Efficient Cancer Gene Therapy.

Adv Healthc Mater

January 2025

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.

Despite the significant potential of short hairpin RNA (shRNA)-mediated gene therapy for various diseases, the clinical success of cancer treatment remains poor, partly because of low selectivity and low efficiency. In this study, an mRNA-initiated autonomous multi-shRNA nanofactory (RNF@CM) is designed for in vivo amplification imaging and precise cancer treatment. The RNF@CM consists of a gold nanoparticle core, an interlayer of two types of three-stranded DNA/RNA hybrid probes, one of which is bound to aptamer-inhibited DNA polymerases, and an outer layer of the cancer cell membrane.

View Article and Find Full Text PDF

Comprehensive analysis of the multi-rings mitochondrial genome of Populus tomentosa.

BMC Genomics

January 2025

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.

Background: Populus tomentosa, known as Chinese white poplar, is indigenous and distributed across large areas of China, where it plays multiple important roles in forestry, agriculture, conservation, and urban horticulture. However, limited accessibility to the mitochondrial (mt) genome of P. tomentosa impedes phylogenetic and population genetic analyses and restricts functional gene research in Salicaceae family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!