A practical approach for the rapid generation and feasible application of green hypocotyl male-sterile (GHMS) tm6 dfr lines in tomato hybrid breeding was established. Male sterility enables reduced cost and high seed purity during hybrid seed production. However, progress toward its commercial application has been slow in tomato due to the disadvantages of most natural male-sterile mutants. Here, we developed a practical method for efficient tomato hybrid seed production using a male-sterile system with visible marker, which was rapidly generated by CRISPR/Cas9-mediated gene editing. Two closely linked genes, TM6 and DFR, which were reported to be candidates of ms15 (male sterile-15) and aw (anthocyanin without) locus, respectively, were knocked out simultaneously in two elite tomato inbred lines. Mutagenesis of both genes generated green hypocotyl male-sterile (GHMS) lines. The GHMS lines exhibited male sterility across different genetic backgrounds and environmental conditions. They also showed green hypocotyl due to defective anthocyanin accumulation, which serves as a reliable visible marker for selecting male-sterile plants at the seedling stage. We further proposed a strategy for multiplying the GHMS system and verified its high efficiency in stable male sterility propagation. Moreover, elite hybrid seeds were produced using GHMS system for potential side effects evaluation, and no adverse influences were found on seed yield, seed quality as well as important agronomic traits. This study provides a practical approach for the rapid generation and feasible application of male sterility in tomato hybrid breeding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-023-04428-5 | DOI Listing |
Pol J Vet Sci
December 2024
Department of Basic sciences, Faculty of Veterinary Medicine, Tabriz medical sciences branch, Islamic Azad University, 5159115705, Tabriz, Iran.
Male fertility is adversely influenced by diabetes. The beneficial effects of antioxidant bioflavonoids in improving fertility have been reported. This study was conducted to evaluate the effects of silymarin on diabetes mellitus-induced male reproductive impairment in rats by investigating its role in Hsp70 and Hsp90 expression.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China.
The prevalence of sperm DNA fragmentation (SDF) is significantly higher in males with infertility, which is often associated with oligozoospermia and hypospermia. It can also occur in patients with infertility who have normal conventional semen indicators. The etiologies involve aberrations in sperm maturation, dysregulated apoptotic processes, and heightened levels of oxidative stress.
View Article and Find Full Text PDFPurpose: The objective of our study was to examine the knowledge of male infertility and the acceptance of assisted reproductive technology (ART) methods.
Patients And Methods: We conducted a descriptive, comparative, cross-sectional study from April 2023 to August 2023 in a center in Dakar. Included in the study were male patients aged 18 and older followed for male infertility (group 1) and fertile patients of the same age as those in group 1 (group 2).
J Adv Res
December 2024
Women's hospital, Ministry education key laboratory, School of Medicine, Zhejiang University, 310006 China. Electronic address:
Introduction: Mammalian sperm within a single ejaculate exhibit significant heterogeneity, with only a subset possessing the molecular characteristics required for successful fertilization. Identifying the defining traits of these high-fertility sperm remains an open question.
Objectives: To elucidate the molecular markers and mechanisms underlying the fertilization potential of sperm in both mice and humans, with a focus on the role of D-mannose.
Urology
December 2024
Endeavor Health, University of Chicago, Division of Urology, 2180 Pfingsten Road suite 3000, Glenview, IL 60026.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!