Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Authentication of herbal products and spices is experiencing a resurgence using DNA-based molecular tools, mainly species-specific assays and DNA barcoding. However, poor DNA quality and quantity are the major demerits of conventional PCR and real-time quantitative PCR (qPCR), as herbal products and spices are highly enriched in secondary metabolites such as polyphenolic compounds. The third-generation digital PCR (dPCR) technology is a highly sensitive, accurate, and reliable method to detect target DNA molecules as it is less affected by PCR inhibiting secondary metabolites due to nanopartitions. Therefore, it can be certainly used for the detection of adulteration in herbal formulations. In dPCR, extracted DNA is subjected to get amplification in nanopartitions using target gene primers, the EvaGreen master mix, or fluorescently labeled targeted gene-specific probes. Here, we describe the detection of Carica papaya (CP) adulteration in Piper nigrum (PN) products using species-specific primers. We observed an increase in fluorescence signal as the concentration of target DNA increased in PN-CP blended formulations (mock controls). Using species-specific primers, we successfully demonstrated the use of dPCR in the authentication of medicinal botanicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3358-8_2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!