As key organelles involved in cellular metabolism, mitochondria frequently undergo adaptive changes in morphology, components and functions in response to various environmental stresses and cellular demands. Previous studies of mitochondria research have gradually evolved, from focusing on morphological change analysis to systematic multiomics, thereby revealing the mitochondrial variation between cells or within the mitochondrial population within a single cell. The phenomenon of mitochondrial variation features is defined as mitochondrial heterogeneity. Moreover, mitochondrial heterogeneity has been reported to influence a variety of physiological processes, including tissue homeostasis, tissue repair, immunoregulation, and tumor progression. Here, we comprehensively review the mitochondrial heterogeneity in different tissues under pathological states, involving variant features of mitochondrial DNA, RNA, protein and lipid components. Then, the mechanisms that contribute to mitochondrial heterogeneity are also summarized, such as the mutation of the mitochondrial genome and the import of mitochondrial proteins that result in the heterogeneity of mitochondrial DNA and protein components. Additionally, multiple perspectives are investigated to better comprehend the mysteries of mitochondrial heterogeneity between cells. Finally, we summarize the prospective mitochondrial heterogeneity-targeting therapies in terms of alleviating mitochondrial oxidative damage, reducing mitochondrial carbon stress and enhancing mitochondrial biogenesis to relieve various pathological conditions. The possibility of recent technological advances in targeted mitochondrial gene editing is also discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10444818 | PMC |
http://dx.doi.org/10.1038/s41392-023-01546-w | DOI Listing |
Front Neurol
January 2025
Department of Pediatric Neurology, Children's Medical Center, First Hospital of Jilin University, Changchun, China.
Mitochondria is the cell's powerhouse. Mitochondrial disease refers to a group of clinically heterogeneous disorders caused by dysfunction in the mitochondrial respiratory chain, often due to mutations in mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) that encodes mitochondrial proteins. This dysfunction can lead to a variety of clinical phenotypes, particularly affecting organs with high energy demands, such as the brain and muscles.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece. Electronic address:
Gliomas constitute the most prevalent primary central nervous system tumors, often characterized by complex metabolic profile, genomic instability, and aggressiveness, leading to frequent relapse and high mortality rates. Traditional treatments are commonly ineffective because of gliomas increased heterogeneity, invasive characteristics and resistance to chemotherapy. Among several pathways affecting cellular homeostasis, cuproptosis has recently emerged as a novel type of programmed cell death, triggered by accumulation of copper ions.
View Article and Find Full Text PDFSyst Biol
January 2025
Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.
Obtaining a timescale for bacterial evolution is crucial to understand early life evolution but is difficult owing to the scarcity of bacterial fossils. Here, we introduce multiple new time constraints to calibrate bacterial evolution based on ancient symbiosis. This idea is implemented using a bacterial tree constructed with genes found in the mitochondrial lineages phylogenetically embedded within Proteobacteria.
View Article and Find Full Text PDFFront Public Health
January 2025
School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China.
Objective: To investigate the role of PCBP1 in the inhibition of lung adenocarcinoma proliferation by carbon irradiation.
Methods: A549 cells were irradiated with different doses of carbon ions to observe clonal survival and detect changes in cell proliferation. Whole transcriptome sequencing and the Illumina platform were used to analyze the differentially expressed genes in A549 cells after carbon ion irradiation.
Front Neurosci
January 2025
Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.
Ischemic stroke is a major cause of mortality and disability worldwide. Among patients with ischemic stroke, the primary treatment goal is to reduce acute cerebral ischemic injury and limit the infarct size in a timely manner by ensuring effective cerebral reperfusion through the administration of either intravenous thrombolysis or endovascular therapy. However, reperfusion can induce neuronal death, known as cerebral reperfusion injury, for which effective therapies are lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!