Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Incidence of hospital-acquired pressure injury, a key indicator of nursing quality, is directly proportional to adverse outcomes, increased hospital stays, and economic burdens on patients, caregivers, and society. Thus, predicting hospital-acquired pressure injury is important. Prediction models use structured data more often than unstructured notes, although the latter often contain useful patient information. We hypothesize that unstructured notes, such as nursing notes, can predict hospital-acquired pressure injury. We evaluate the impact of using various natural language processing packages to identify salient patient information from unstructured text. We use named entity recognition to identify keywords, which comprise the feature space of our classifier for hospital-acquired pressure injury prediction. We compare scispaCy and Stanza, two different named entity recognition models, using unstructured notes in Medical Information Mart for Intensive Care III, a publicly available ICU data set. To assess the impact of vocabulary size reduction, we compare the use of all clinical notes with only nursing notes. Our results suggest that named entity recognition extraction using nursing notes can yield accurate models. Moreover, the extracted keywords play a significant role in the prediction of hospital-acquired pressure injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10884344 | PMC |
http://dx.doi.org/10.1097/CIN.0000000000001053 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!