Aerosol-bound water, a ubiquitous and abundant component of atmospheric aerosols, has an impact on regional climate, visibility, human health, the hydrological cycle, and atmospheric chemistry. Yet, the intricate relationship between aerosol liquid water (ALWC) and chemical composition and relative humidity (RH) was not well understood. The present study explores ALWC derived from the ISORROPIA II model using real-time, high-resolution data of non-refractory submicron chemical species and meteorological parameters (temperature and RH) collected over the Indian Ocean as part of the ICARB (Integrated Campaign for Aerosols, Gases, and Radiation Budget)-2018 experiment. Results show that ALWC values over the South Eastern Arabian Sea (SEAS) were found to be higher by 4-6 times than those observed over the Equatorial Indian Ocean (EIO) due to a large decrease in aerosol loading from SEAS to EIO. ALWC peaked in the early morning hours (4:00-7:00), with greater values during the nighttime and lower values during the daytime across SEAS, which is comparable with RH variation. While the ratio of organics-to-SO mass fraction linearly decreased with increasing mass-based growth factors (MGFs) over EIO, such a scenario was not observed over SEAS. The latitudinal gradient of mass fraction of ALWC had shown a decrease towards EIO, consistent with organic fraction. The extinction coefficient of the dry mass of submicron particles is noticeably increased by 40 % by ALWC over SEAS and EIO. Moreover, ALWC could enhance the aerosol negative forcing by an average of 66 % (64 %) over SEAS (EIO) at the top of the atmosphere during the cruise period. These inferences imply that ALWC is the key factor in assessing the role of aerosols on atmospheric radiative forcing. Overall, the present study highlights the serious need to consider the ALWC in climate forcing simulations, particularly in moist tropical environments where their effect can be significant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.166461DOI Listing

Publication Analysis

Top Keywords

indian ocean
12
seas eio
12
alwc
9
aerosol liquid
8
liquid water
8
mass-based growth
8
growth factors
8
eio alwc
8
mass fraction
8
seas
6

Similar Publications

Redistribution of dissolved inorganic nitrogen loading and transport in global rivers via surface water regulation.

Sci Total Environ

January 2025

State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.

Surface water (SW) regulation, including reservoir regulation and surface water use, alters the soil-river hydrological processes and then influences the dissolved inorganic nitrogen (DIN) transport from rivers to oceans. However, global response of the DIN transfer to such human activity has not been well investigated. Therefore, in this study, we have taken advantage of a recently-developed land surface model to show the effects of SW regulation on DIN loading and transport in global major rivers.

View Article and Find Full Text PDF

Extreme droughts in the Amazon Basin during cyclic ENSO events coupled with Indian Ocean Dipole modes and Tropical North Atlantic warming.

Sci Total Environ

January 2025

Programa de Pós-Graduação em Clima e Ambiente, Instituto Nacional de Pesquisas da Amazônia, Universidade do Estado do Amazonas, Av. André Araújo, 2936, Bairro Aleixo, 69060-001 Manaus, AM, Brazil.

The teleconnections between El Niño-Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), and Tropical North Atlantic warming (+TNA) play a critical role in characterizing extreme drought events in the Amazon Basin (AB). This study examines the seven most recent drought extreme events up to 2023, using seasonal composites of the sea surface temperature and atmospheric variables over a five-quarter period starting at the austral spring(-1) of the year preceding that when the lowest water level at Manaus port was recorded. Two distinct patterns emerge, driven by consecutive ENSO events with opposite phases, referred to as cyclic La Niña-El Niño and cyclic El Niño-La Niña drought events.

View Article and Find Full Text PDF

The deep oceans are environments of complex carbon dynamics that have the potential to significantly impact the global carbon cycle. However, the role of hadal zones, particularly hadal trenches (water depth > 6 km), in the oceanic dissolved organic carbon (DOC) cycle is not thoroughly investigated. Here we report distinct DOC signatures in the Japan Trench bottom water.

View Article and Find Full Text PDF

Tsunamis are massive waves generated by sudden water displacement on the ocean surface, causing devastation as they sweep across the coastlines, posing a global threat. The aftermath of the 2004 Indian Ocean tsunami led to the establishment of the Indian Tsunami Early Warning System (ITEWS). Predicting real-time tsunami heights and the resulting coastal inundation is crucial in ITEWS to safeguard the coastal communities.

View Article and Find Full Text PDF

Epidemiology of antibiotic consumption and resistance in Mauritius.

Front Antibiot

April 2024

Surveillance Epidemiologique et Gestion des Alertes (SEGA) One Health network, Indian Ocean Commission, Ebene, Mauritius.

Introduction: This study aims at determining the pattern of antibiotic consumption and resistance in Mauritius, a tropical island in the Indian Ocean.

Methodology: Antibiotic consumption was measured in kilograms of purchased antibiotics and also in defined daily dose (DDD) in different health institutions from 2015 to 2017. Data on antibiotic resistance was collected at the Central Health Laboratory (CHL) at Victoria Hospital and at Jeetoo Hospital Laboratory, where antibiotic sensitivity testing is done for all public health institutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!