CRISPR-Cas adaptive immune systems uptake short "spacer" sequences from foreign DNA and incorporate them into the host genome to serve as templates for CRISPR RNAs that guide interference against future infections. Adaptation in CRISPR systems is mediated by Cas1-Cas2 complexes that catalyze integration of prespacer substrates into the CRISPR array. Many DNA targeting systems also require Cas4 endonucleases for functional spacer acquisition. Cas4 selects prespacers containing a protospacer adjacent motif (PAM) and removes the PAM prior to integration, both of which are required to ensure host immunization. Cas1 has also been shown to function as a nuclease in some systems, but a role for this nuclease activity in adaptation has not been demonstrated. We identified a type I-G Cas4/1 fusion with a nucleolytically active Cas1 domain that can directly participate in prespacer processing. The Cas1 domain is both an integrase and a sequence-independent nuclease that cleaves the non-PAM end of a prespacer, generating optimal overhang lengths that enable integration at the leader side. The Cas4 domain sequence specifically cleaves the PAM end of the prespacer, ensuring integration of the PAM end at the spacer side. The two domains have varying metal ion requirements. While Cas4 activity is Mn dependent, Cas1 preferentially uses Mg over Mn. The dual nuclease activity of Cas4/1 eliminates the need for additional factors in prespacer processing making the adaptation module self-reliant for prespacer maturation and directional integration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504553 | PMC |
http://dx.doi.org/10.1016/j.jbc.2023.105178 | DOI Listing |
Narra J
December 2024
Animal Research Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) offers a robust approach for genome manipulation, particularly in cancer therapy. Given its high expression in triple-negative breast cancer (TNBC), targeting with CRISPR/Cas9 holds promise as a therapeutic strategy. The aim of this study was to design specific single guide ribonucleic acid (sgRNA) for CRISPR/Cas9 to permanently knock out the gene, exploring its potential as a therapeutic approach in breast cancer while addressing potential off-target effects.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China.
Background: XB130, a classical adaptor protein, exerts a critical role in diverse cellular processes. Aberrant expression of XB130 is closely associated with tumorigenesis and aggressiveness. However, the mechanisms governing its expression regulation remain poorly understood.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Cixi Biomedical Research Institute, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China.
Accurate identification of cancer cells under complex physiological environments holds great promise for noninvasive diagnosis and personalized medicine. Herein, we developed dual-aptamer-based DNA logic-gated series lamp probes (Apt-SLP) by coupling a DNA cell-classifier (DCC) with a self-powered signal-amplifier (SSA), enabling rapid and sensitive identification of cancer cells in a blood sample. DCC is endowed with two extended-aptamer based modules for recognizing the two cascade cell membrane receptors and serves as a DNA logic gate to pinpoint a particular and narrow subpopulation of cells from a larger population of similar cells.
View Article and Find Full Text PDFSci Rep
January 2025
Thoracic and GI Malignancies Branch, National Institutes of Health, 10 Center Drive, 2B50C, Bethesda, MD, 20892, USA.
Human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer type in the world and is associated with an overall poor prognosis. The protein methyltransferase SET and MYND domain-containing 3 (SMYD3), which trimethylates H3K4, activates gene transcription and enhances several oncogenic pathways, including epithelial-mesenchymal transition and cell cycle related pathways, in various cancer types. It was also recently shown that SMYD3 is overexpressed in HPV-negative HNSCC, and represses the expression of type I IFN response genes, contributing to resistance to anti-PD-1 checkpoint blockade in this disease.
View Article and Find Full Text PDFCell Rep
December 2024
Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China. Electronic address:
Single-cell lineage tracing based on CRISPR-Cas9 gene editing enables the simultaneous linkage of cell states and lineage history at a high resolution. Despite its immense potential in resolving the cell fate determination and genealogy within an organism, existing implementations of this technology suffer from limitations in recording capabilities and considerable barcode dropout. Here, we introduce DuTracer, a versatile tool that utilizes two orthogonal gene editing systems to record cell lineage history at single-cell resolution in an inducible manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!