Purpose: To determine the genetic predisposition underlying pancreatic acinar cell carcinoma (PACC) and characterize its genomic features.
Methods: Both somatic and germline analyses were performed using an Food and Drug Administration-authorized matched tumor/normal sequencing assay on a clinical cohort of 28,780 patients with cancer, 49 of whom were diagnosed with PACC. For a subset of PACCs, whole-genome sequencing (WGS; n = 12) and RNA sequencing (n = 6) were performed.
Results: Eighteen of 49 (36.7%) PACCs harbored germline pathogenic variants in homologous recombination (HR) and DNA damage response (DDR) genes, including (n = 1), (n = 12), (n = 2), (n = 2), and (n = 1). Thirty-one PACCs displayed pure, and 18 PACCs harbored mixed acinar cell histology. Fifteen of 31 (48%) pure PACCs harbored a germline pathogenic variant affecting HR-/DDR-related genes. germline pathogenic variants (11 of 31, 35%) were significantly more frequent in pure PACCs than in pancreatic adenocarcinoma (86 of 2,739, 3.1%; < .001), high-grade serous ovarian carcinoma (67 of 1,318, 5.1%; < .001), prostate cancer (116 of 3,401, 3.4%; < .001), and breast cancer (79 of 3,196, 2.5%; < .001). Genomic features of HR deficiency (HRD) were detected in 7 of 12 PACCs undergoing WGS, including 100% (n = 6) of PACCs with germline HR-related pathogenic mutations and 1 of 6 PACCs lacking known pathogenic alterations in HR-related genes. Exploratory analyses revealed that in PACCs, the repertoire of somatic driver genetic alterations and the load of neoantigens with high binding affinity varied according to the presence of germline pathogenic alterations affecting HR-/DDR-related genes and/or HRD.
Conclusion: In a large pan-cancer cohort, PACC was identified as the cancer type with the highest prevalence of both germline pathogenic variants and genomic features of HRD, suggesting that PACC should be considered as part of the spectrum of -related malignancies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667000 | PMC |
http://dx.doi.org/10.1200/JCO.23.00561 | DOI Listing |
Transl Cancer Res
December 2024
BGI Research, Chongqing, China.
Background: Medulloblastoma (MB) is a highly malignant childhood brain tumor. Previous research on the genetic underpinnings of MB subtypes has predominantly focused on European and American cohorts. Given the notable genetic differences between Asian and other populations, a subtype-specific study on an Asian cohort is essential to provide comprehensive insights into MB within this demographic.
View Article and Find Full Text PDFBreast Cancer Res
January 2025
Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, 66451, Monterrey, Nuevo León, México.
Background: Hereditary predisposition to breast and ovarian cancer syndrome (HBOC) is a pathological condition with increased cancer risk, including breast (BC), ovarian cancer (OC), and others. HBOC pathogenesis is caused mainly by germline pathogenic variants (GPV) in BRCA1 and BRCA2 genes. However, other relevant genes are related to this syndrome diagnosis, prognosis, and treatment, including TP53, PALB2, CHEK2, ATM, etc.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Institute of Cancer Research, London, UK.
Histone mutations (H3 K27M, H3 G34R/V) are molecular features defining subtypes of paediatric-type diffuse high-grade gliomas (HGG) (diffuse midline glioma (DMG), H3 K27-altered, diffuse hemispheric glioma (DHG), H3 G34-mutant). The WHO classification recognises in exceptional cases, these mutations co-occur. We report one such case of a 2-year-old female presenting with neurological symptoms; MRI imaging identified a brainstem lesion which was biopsied.
View Article and Find Full Text PDFJ Hepatobiliary Pancreat Sci
January 2025
Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan.
In Japan, 5 years have passed since the initiation of precision cancer medicine, and recent data accumulation in familial pancreatic cancer (FPC) and hereditary pancreatic cancer is outstanding. Multigene germline panel tests (MGPTs) have revealed that 7%-18% of patients with pancreatic cancer (PC) harbor pathogenic germline variants (PGVs), almost equal to the levels of breast, ovarian, endometrial, and colorectal cancers, with a higher incidence in FPC (14%-26%). The majority of PGVs seen in PC patients are clinically actionable and associated with homologous recombination (HR) pathways (6%-10%, particularly BRCA1/2 in 5%-6%), and the clinical guidelines recommend or propose genetic testing for all PC patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!