A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Portable Cardiac Dynamic Monitoring System in the Framework of Electro-Mechano-Acoustic Mapping. | LitMetric

Abnormalities in cardiac function arise irregularly and typically involve multimodal electrical, mechanical vibrations, and acoustics alterations. This paper proposes an Electro-Mechano-Acoustic (EMA) activity model for mapping the complete macroscopic cardiac function to refine the systematic interpretation of cardiac multimodal assessment. We abstract this activity pattern and build the mapping system by analyzing the functional comparison of the heart pump and Electronic Fuel Injection (EFI) system from the multimodal characteristics of the heart. Electrocardiogram (ECG), seismocardiogram (SCG) & Ultra-Low Frequency seismocardiogram (ULF-SCG), and Phonocardiogram (PCG) are selected to implement the EMA mapping respectively. First, a novel low-frequency cardiograph compound sensor capable of extracting both SCG and ULF-SCG is proposed, which is integrated with ECG and PCG modules on a single hardware device for portable dynamic acquisition. Afterward, a multimodal signal processing chain further analyses the acquired synchronized signals, and the extracted ULF-SCG is shown to indicate changes in heart volume. In particular, the proposed method based on waveform curvature is used to extract 9 feature points of the SCG signal, and the overall recognition accuracy reaches over 90% in the data collected by EMA portable device. Ultimately, we integrate the portable device and signal processing chains to form the EMA cardiovascular mapping system (EMACMS). As a next-generation system solution for cardiac daily dynamic monitoring, which can map the mechanical coupling and electromechanical coupling process, extract multi-characteristic heart rate variability (HRV), and enable extraction of important time intervals of cardiac activity to assess cardiac function.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBCAS.2023.3307188DOI Listing

Publication Analysis

Top Keywords

cardiac function
12
dynamic monitoring
8
mapping system
8
signal processing
8
portable device
8
cardiac
6
system
5
mapping
5
portable
4
portable cardiac
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!