Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Retinal dystrophies are a leading cause of blindness worldwide. Extensive efforts are underway to develop advanced retinal prostheses that can bypass the impaired light-sensing photoreceptor cells in the degenerated retina, aiming to partially restore vision by inducing visual percepts. One common avenue of investigation involves the design and production of implantable devices with a flexible physical structure, housing a high number of electrodes. This enables the efficient and precise generation of visual percepts. However, with each technological advancement, there arises a need for a reliable and manageable ex vivo method to verify the functionality of the device before progressing to in vivo experiments, where factors beyond the device's performance come into play. This article presents a comprehensive protocol for studying calcium activity in the retinal ganglion cell layer (GCL) following electrical stimulation. Specifically, the following steps are outlined: (1) fluorescently labeling the rat retina using genetically encoded calcium indicators, (2) capturing the fluorescence signal using an inverted fluorescence microscope while applying distinct patterns of electrical stimulation, and (3) extracting and analyzing the calcium traces from individual cells within the GCL. By following this procedure, researchers can efficiently test new stimulation protocols prior to conducting in vivo experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/65705 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!