H NMR relaxometry was applied for molecular-level structural analysis of siRNA-loaded lipid nanoparticles (LNPs) to clarify the impact of the neutral lipids, 1,2-distearoyl--glycero-3-phosphocholine (DSPC) and cholesterol, on the physicochemical properties of LNP. Incorporating DSPC and cholesterol in ionizable lipid-based LNP decreased the molecular mobility of ionizable lipids. DSPC reduced the overall molecular mobility of ionizable lipids, while cholesterol specifically decreased the mobility of the hydrophobic tails of ionizable lipids, suggesting that cholesterol filled the gap between the hydrophobic tails of ionizable lipids. The decrease in molecular mobility and change in orientation of lipid mixtures contributed to the maintenance of the stacked bilayer structure of siRNA and ionizable lipids, thereby increasing the siRNA encapsulation efficiency. Furthermore, NMR relaxometry revealed that incorporating those neutral lipids enhanced PEG chain flexibility at the LNP interface. Notably, a small amount of DSPC effectively increased PEG chain flexibility, possibly contributing to the improved dispersion stability and narrower size distribution of LNPs. However, cryogenic transmission electron microscopy represented that adding excess amounts of DSPC and cholesterol into LNP resulted in the formation of deformed particles and demixing cholesterol within the LNP, respectively. The optimal lipid composition of ionizable lipid-based LNPs in terms of siRNA encapsulation efficiency and PEG chain flexibility was rationalized based on the molecular-level characterization of LNPs. Moreover, the NMR relaxation rate of tertiary amine protons of ionizable lipids, which are the interaction site with siRNA, can be a valuable indicator of the encapsulated amount of siRNA within LNPs. Thus, NMR-based analysis can be a powerful tool for efficiently designing LNP formulations and their quality control based on the molecular-level elucidation of the physicochemical properties of LNPs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.3c00477DOI Listing

Publication Analysis

Top Keywords

ionizable lipids
24
nmr relaxometry
12
dspc cholesterol
12
molecular mobility
12
peg chain
12
chain flexibility
12
molecular-level structural
8
structural analysis
8
analysis sirna-loaded
8
sirna-loaded lipid
8

Similar Publications

Mass Spectrometry Imaging Reveals Spatial Metabolic Alterations and Salidroside's Effects in Diabetic Encephalopathy.

Metabolites

December 2024

Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.

Diabetic encephalopathy (DE) is a neurological complication of diabetes marked by cognitive decline and complex metabolic disturbances. Salidroside (SAL), a natural compound with antioxidant and neuroprotective properties, has shown promise in alleviating diabetic complications. Exploring the spatial metabolic reprogramming in DE and elucidating SAL's metabolic effects are critical for deepening our understanding of its pathogenesis and developing effective therapeutic strategies.

View Article and Find Full Text PDF

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) progressing to metabolic dysfunction-associated steatohepatitis (MASH), characterized by hepatic inflammation, has significantly increased in recent years due to unhealthy dietary practices and sedentary lifestyles. Cathepsin D (CTSD), a lysosomal protease involved in lipid homeostasis, is linked to abnormal lipid metabolism and inflammation in MASH. Although primarily intracellular, CTSD can be secreted extracellularly.

View Article and Find Full Text PDF

Halogenated organic pollutants (HOPs) have attracted considerable attention owing to their persistence, bioaccumulation, and toxicity. The development of methods to detect HOPs in fish is challenging owing to the compositional complexity of fish matrices, which contain high levels of lipids and relatively low concentrations of HOPs. In addition, the lipophilicity of most HOPs renders their extraction difficult.

View Article and Find Full Text PDF

Ambient mass spectrometry imaging (MSI) enables hundreds of analytes in tissue sections to be directly mapped at atmospheric pressure with minimal sample preparation. This field is currently experiencing rapid growth, with numerous reported ambient ionization techniques resulting in a "hundred flowers bloom" situation. Nanospray desorption electrospray ionization (nano-DESI), developed by the Laskin group in 2010, is a widely used liquid-extraction-based ambient ionization technique that was first used for mass spectrometry imaging of tissue in 2012.

View Article and Find Full Text PDF

[Progress in applications of ambient ionization mass spectrometry for lipids identification].

Se Pu

January 2025

Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.

Lipids are indispensable components of living organisms and play pivotal roles in cell-membrane fluidity, energy provision, and neurotransmitter transmission and transport. Lipids can act as potential biomarkers of diseases given their abilities to indicate cell-growth status. For example, the lipid-metabolism processes of cancer cells are distinct from those of normal cells owing to their rapid proliferation and adaptation to ever-changing biological environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!