The combination of 2D magnetic nanosheets and mesoporous carbon with unique interfaces shows considerable prospects for microwave absorption (MA). However, traditional assembly procedures make it impossible to accurately manage the assembly of magnetic nanosheets in carbon matrices. Herein, a reverse strategy for preparing complex magnetic nanosheet cores inside carbon-based yolk-shell structures is developed. This innovative approach focuses on controlling the initial crystallite formation sites in a hydrothermal reaction as well as the inflow and in situ growth behavior of 2D NiCo-layered double hydroxide precursors based on the capillary force induced by hollow mesoporous carbon nanospheres. Accordingly, the as-prepared YS-CNC-2 absorber exhibits remarkable MA performances, with an optimal reflection loss as low as -60.30 dB at 2.5 mm and an effective absorption bandwidth of 5.20 GHz at 2.0 mm. The loss of electromagnetic waves (EMW) depends on natural resonance loss, dipole polarization relaxation, and multiple scattering behavior. On top of that, the functionalized super-hydrophobic MA coating is produced in spraying and curing processes utilizing YS-CNC-2 nanoparticles and fumed silica additives in the polydimethylsiloxane matrix. The excellent thermal insulation, self-cleaning capability, and durability in diverse solutions of the coating promise potential applications for military equipment in moist situations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202305353DOI Listing

Publication Analysis

Top Keywords

mesoporous carbon
12
thermal insulation
8
microwave absorption
8
magnetic nanosheets
8
nico /hollow
4
/hollow mesoporous
4
carbon
4
carbon nanosphere
4
nanosphere hybrids
4
hybrids enabling
4

Similar Publications

In this study, CO reacted with a curing agent through nucleophilic addition to form ammonium salts, enabling the stable capture and internal release of CO, which achieved gas-phase nucleation and foaming. Additionally, the introduction of wave-absorbing agents improved the absorption mechanism and promoted uniform foaming. This nucleation-free foaming process relies on the induced growth of gas nuclei and the synergistic effect of the wave-absorbing agents, effectively preventing the uneven foaming issues caused by traditional nucleating agents.

View Article and Find Full Text PDF

Poor breathability, inadequate flexibility, bulky wearability, and insufficient gas-adsorption capacity always limit the developments and applications of conventional chemical protective clothing (CPC). To create a lightweight, breathable, and flexible fabric with a high gas-absorption capacity, activated carbon (AC)-loaded poly(m-phenylene isophthalamide) (PMIA) porous composite fibres were fabricated from a mixed wet-spinning process integrated with a solvent-free phase separation process. By manipulating the pore parameters of as-spun composite fibres, the exposure-immobilization of AC particles on the fibre surface can offer a higher gas-absorption capacity and better AC-loading stability.

View Article and Find Full Text PDF

Due to the complex physical properties of low-permeability glutenite reservoirs, the oil recovery rate with conventional development is low. Surfactants are effective additives for enhanced oil recovery (EOR) due to their good ability of wettability alteration and interfacial tension (IFT) reduction, but the reason why imbibition efficiencies vary with different types of surfactants and the mechanism of enhanced imbibition in the glutenite reservoirs is not clear. In this study, the imbibition efficiency and recovery of surfactants including the nonionic, anionic, and cationic surfactants as well as nanofluids were evaluated and compared with produced water (PW) using low-permeability glutenite core samples from the Lower Urho Formation in the Mahu oil field.

View Article and Find Full Text PDF

Research on the Adsorption Mechanism and Performance of Cotton Stalk-Based Biochar.

Molecules

December 2024

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.

In this research, we produced two types of biochar (BC) using cotton stalks as raw material and KOH as an activator, and compared their performance and adsorption mechanisms in the removal of tetracycline (TC) and methylene blue (MB) from wastewater. The results showed that the biochar generated using both procedures formed pores that connected to the interior of the biochar and had extensive microporous and mesoporous structures. The molten salt approach produces biochar with a higher specific surface area, larger pore size, and higher pore volume than the impregnation method, with a maximum specific surface area of 3095 m/g.

View Article and Find Full Text PDF

The resistivity of the silica SBA-15 type can be significantly improved by forming a thin layer of carbon on the pore surface. This is possible through the carbonization reaction of a surfactant used as a structure-directing agent in the synthesis of mesostructured silica materials. The synthesis of this type of silica-carbon composite (SBA-C) is based on the use of sulfuric acid to create a carbon layer from surfactant molecules encapsulated in silica mesopores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!