Cycling exercise in older individuals is beneficial for the cardiovascular system and quadriceps muscles, including partially reversing the age-related loss of quadriceps muscle mass. However, the effect of cycling exercise on the numerous other lower limb muscles is unknown. Six older men (74 ± 8 years) underwent MRI before and after 12-weeks of progressive aerobic cycle exercise training (3-4 days/week, 60-180 min/week, 60%-80% heart rate reserve, VO max: +13%) for upper (rectus femoris, vastii, adductor longus, adductor magnus, gracilis, sartorius, biceps femoris long head, biceps femoris short head, semimembranosus, semitendinosus) and lower (anterior tibial, posterior tibialis, peroneals, flexor digitorum longus, lateral gastrocnemius, medial gastrocnemius, soleus) leg muscle volumes. In the upper leg, cycle exercise training induced hypertrophy (p ≤ 0.05) in the vastii (+7%) and sartorius (+6%), with a trend to increase biceps femoris short head (+5%, p = 0.1). Additionally, there was a trend to decrease muscle volume in the adductor longus (-6%, p = 0.1) and biceps femoris long head (-5%, p = 0.09). In the lower leg, all 7 muscle volumes assessed were unaltered pre- to post-training (-2% to -3%, p > 0.05). This new evidence related to cycle exercise training in older individuals clarifies the specific upper leg muscles that are highly impacted, while revealing all the lower leg muscles do not appear responsive, in the context of muscle mass and sarcopenia. This study provides information for exercise program development in older individuals, suggesting other specific exercises are needed for the rectus femoris and adductors, certain hamstrings, and the anterior and posterior lower leg muscles to augment the beneficial effects of cycling exercise for older adults.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442866PMC
http://dx.doi.org/10.14814/phy2.15781DOI Listing

Publication Analysis

Top Keywords

cycle exercise
16
exercise training
16
biceps femoris
16
muscle mass
12
cycling exercise
12
older individuals
12
lower leg
12
leg muscles
12
lower limb
8
limb muscles
8

Similar Publications

Background/objectives: Low energy availability (LEA) can cause impaired reproductive function, bone health issues, and suppressed immune function, and may result in decreased performance and overall health status. The purpose of this study was to investigate adaptions of body composition, blood status, resting metabolic rate, and endurance performance to gain more comprehensive insights into the symptoms of LEA and the adaptive effects in the athlete population (active women (n = 11) and men (n = 11)).

Methods: Three treatments were defined as 45 (EA45, control), 30 (EA30), and 10 (EA10) kcal/kg FFM/day and randomly assigned.

View Article and Find Full Text PDF

Background: Quercetin (QCT) and citrulline (CIT) have been independently associated with improved antioxidant capacity and nitric oxide (NO) production, potentially enhancing cardiovascular function and exercise performance. This study aimed to evaluate the combined and independent effects of QCT and CIT supplementation on NO metabolites and antioxidant biomarkers in 50 trained cyclists undergoing a 20 km cycling time trial (TT).

Methods: In a randomized, double-blind, placebo-controlled design, forty-two male and eight female trained cyclists were assigned to QCT + CIT, QCT, CIT, or placebo (PL) groups.

View Article and Find Full Text PDF

As an endurance multi-sport race, triathlon places significant energy demands on athletes during performance and training. Insufficient energy intake from food can lead to low energy availability (LEA) and Relative Energy Deficiency in Sport (RED-S). We aimed to measure symptoms related to LEA, examine the risk of RED-S, and find how diet relates to the risk of RED-S in highly trained female amateur triathletes.

View Article and Find Full Text PDF

Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article proposes a new method to identify the optimal placements of the IMUs and quantify the smoothness of the gait. First, it identifies gait events: foot-strike (FS) and foot-off (FO).

View Article and Find Full Text PDF

This study evaluated the influence of cycle computers on the accuracy of power and cadence data. The research was divided into three phases: (1) a graded exercise test (GXT) at different constant loads to record power and cadence data; (2) a self-paced effort lasting 1 min to measure mean maximal power output (MMP); and (3) a short all-out effort. Eight cyclists completed the GXT, ten participated in the 1-min test, and thirty participated in the sprint effort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!