In order to guarantee the desired quality of machined products, a reliable surface roughness assessment is essential. Using a surface profile metre with a contact stylus, which can produce accurate measurements of surface profiles, is the most popular technique for determining the surface roughness of machined items. One of the limitations of this technique is the work piece surface degradation brought on by mechanical contact between the stylus and the surface. Hence, in this paper, a roughness assessment technique based on the suggested Taylor-Gorilla troops optimizer-based Deep Neuro-Fuzzy Network (Taylor-GTO based DNFN) is proposed for estimating the surface roughness. Pre-processing, data augmentation, feature extraction, feature fusion, and roughness estimation are the procedures that the suggested technique uses to complete the roughness estimate procedure. Roughness estimation is performed using DNFN that has been trained using Taylor-GTO, which was created by combining the Taylor series with the Gorilla troop's optimizer. The created Taylor-GTO based DNFN model has minimum Mean Absolute Error, Mean Square Error, and RMSE of 0.403, 0.416, and 1.149, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1080/0954898X.2023.2237587DOI Listing

Publication Analysis

Top Keywords

surface roughness
16
roughness estimation
12
taylor-gorilla troops
8
surface
8
roughness
8
roughness assessment
8
contact stylus
8
taylor-gto based
8
based dnfn
8
troops optimized
4

Similar Publications

The emergence of toothpastes containing different abrasive and whitening substances has been a constant concern among dental professionals. The aim of the present study was to perform an in vitro assessment of the surface topography of nanoparticle composite resins subjected to simulated brushing with dentifrices. Test samples were prepared with Filtek Universal (3M ESPE), Filtek Bulkfill (3M ESPE) and Z350 (3M ESPE), with 24 samples per resin.

View Article and Find Full Text PDF

Bacteriophages infect gram-negative bacteria by attaching to molecules present on the bacterial surface, often lipopolysaccharides (LPS). Modification of LPS can lead to resistance to phage infection. In addition, LPS modifications can impact antibiotic susceptibility, allowing for phage-antibiotic synergism.

View Article and Find Full Text PDF

This article reports facile fabrication of a multifunctional smart surface having superhydrophobic self-cleaning property, superoleophilicity, and antimicrobial property. These smart surfaces have been synthesized using the stereolithography (SLA) method of the additive manufacturing technique. SLA is a fast additive manufacturing technique used to create complex parts with intricate geometries.

View Article and Find Full Text PDF

The science of printing and polishing 3D-printed dentures.

F1000Res

January 2025

Department of Prosthodontics and Crown & Bridge, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Objective: To analyze the effectiveness of various techniques available for printing, finishing and polishing of 3D printed prosthesis.

Methods: The articles were selected from electronic databases including PubMed and Scopus. Recently, lot of advancements have been observed in the field of 3D printing in dentistry.

View Article and Find Full Text PDF

The Efficacy of 3 Bleaching Methods on Stained Polymer-Based CAD/CAM Materials.

Int Dent J

January 2025

Biomaterials Science, Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester, UK.

Introduction And Aims: This study aimed to investigate the efficacy of 3 bleaching methods on stained polymer-based CAD/CAM blocks in terms of surface roughness, hardness stability, discolouration reduction and susceptibility to re-staining following bleaching.

Methods: Two-mm-thick slabs (N = 128) were prepared from CeraSmart (CS), Grandio Blocs (GB), Vita Enamic (VE), and direct resin composite GrandioSO (RC). Coffee-stained specimens (n = 8) were subdivided into bleaching (BL) groups: in-office bleaching (OB), home bleaching (HB), whitening mouthwash (MW), and a control group with 14-day storage in water (CL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!