AI Article Synopsis

  • ADHD is a common neurodevelopmental disorder affecting about 5.3% of children and 2.5% of adults, with a link to sleep disturbances and a specific mutation in the CRY1 gene leading to ADHD-like symptoms.
  • In a study with Cry1Δ11 mice carrying this mutation, researchers observed hyperactivity, impulsivity, and learning deficits, alongside increased activity in the brain's reward center (nucleus accumbens) linked to dopamine signaling.
  • The findings suggest that the altered interaction of the mutated CRY1 protein with dopamine receptors is a key mechanism in ADHD, and using a specific dopamine antagonist showed potential to alleviate these symptoms, highlighting a new therapeutic target.

Article Abstract

Attention-deficit hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder that affects approximately 5.3% of children and approximately 2.5% of adults. There is an intimate relationship between ADHD and sleep disturbance. Specifically, individuals carry a mutation in the core circadian gene CRY1 (c. 1657 + 3A > C), which results in the deletion of exon 11 expression in the CRY1 protein (CRY1Δ11), causing them to exhibit typical ADHD symptoms. However, the underlying mechanism is still elusive. In this study, we demonstrate that Cry1Δ11 (c. 1717 + 3A > C) mice showed ADHD-like symptoms, including hyperactivity, impulsivity, and deficits in learning and memory. A hyperactive cAMP signaling pathway was found in the nucleus accumbens (NAc) of Cry1Δ11 mice. We further demonstrated that upregulated c-Fos was mainly localized in dopamine D1 receptor-expressing medium spiny neurons (DRD1-MSNs) in the NAc. Neuronal excitability of DRD1-MSNs in the NAc of Cry1Δ11 mice was significantly higher than that of WT controls. Mechanistically, the CRY1Δ11 protein, in contrast to the WT CRY1 protein, failed to interact with the Gαs protein and inhibit DRD1 signaling. Finally, the DRD1 antagonist SCH23390 normalized most ADHD-like symptoms in Cry1Δ11 mice. Thus, our results reveal hyperactive DRD1 signaling as an underlying mechanism and therapeutic target for ADHD induced by the highly prevalent CRY1Δ11 mutation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543712PMC
http://dx.doi.org/10.1172/jci.insight.170434DOI Listing

Publication Analysis

Top Keywords

adhd-like symptoms
12
cry1Δ11 mice
12
cry1Δ11
8
cry1Δ11 mutation
8
cry1 protein
8
underlying mechanism
8
nac cry1Δ11
8
drd1-msns nac
8
drd1 signaling
8
mutation induces
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!