Synthetic lipo-polylysine with anti-cancer activity.

Biomater Sci

Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

Published: September 2023

Development of novel therapeutic agents that possess different anticancer mechanisms from the traditional antitumor drugs is highly attractive as no medication can cure all types of cancers. Herein, we report a rational design of antitumor lipo-polylysine polymers as synthetic mimics of biosynthetic lipopeptide surfactants featuring antimicrobial or cytotoxic activities for cancer therapy. The optimal polymer shows a wide range of anticancer activities against multiple cancer cells, including highly metastatic and drug-resistant ones, but low toxicity to normal cells. Mechanism studies show that the optimal polymer can interact with the membrane of cancer cells and induce cell necrosis by triggering cell membrane perforation, which is different from the therapeutic mechanisms of traditional anticancer drugs. studies imply that the optimal polymer efficiently inhibits tumor growth without causing obvious side effects on a C26 graft tumor model. Overall, the lipopeptide-mimicking lipo-polylysine with the advantages of easy synthesis and low cost provides a new anticancer strategy with high efficacy and biocompatibility.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3bm01099fDOI Listing

Publication Analysis

Top Keywords

optimal polymer
12
mechanisms traditional
8
cancer cells
8
synthetic lipo-polylysine
4
lipo-polylysine anti-cancer
4
anti-cancer activity
4
activity development
4
development novel
4
novel therapeutic
4
therapeutic agents
4

Similar Publications

A Neural-Network-Based Mapping and Optimization Framework for High-Precision Coarse-Grained Simulation.

J Chem Theory Comput

January 2025

Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

The accuracy and efficiency of a coarse-grained (CG) force field are pivotal for high-precision molecular simulations of large systems with complex molecules. We present an automated mapping and optimization framework for molecular simulation (AMOFMS), which is designed to streamline and improve the force field optimization process. It features a neural-network-based mapping function, DSGPM-TP (deep supervised graph partitioning model with type prediction).

View Article and Find Full Text PDF

Pharmaceutical giants (e.g., Ashland, Bausch & Lomb, Johnson & Johnson, Medtronic, Neurelis, etc.

View Article and Find Full Text PDF

Pt-CeO nanosponges (1 wt% Pt) with high surface area (113 m g), high pore volume (0.08 cm g) and small-sized Pt nanoparticles (1.8 ± 0.

View Article and Find Full Text PDF

Selecting an appropriate microcatheter tip shape for paraclinoid aneurysms is difficult. Therefore, we devised an original simple and uniform three-dimensional (3D) spiral-shaping method of microcatheter and validated the characteristics and usefulness of this method for coil embolization of paraclinoid aneurysms using patient-specific silicone models. These silicone models were produced based on clinical data from four patients with four paraclinoid aneurysms that underwent endovascular treatment using the 3D spiral-shaping method.

View Article and Find Full Text PDF

ssDNA Capture Dynamics by Graphene Nanopores: The Role of Electrophoresis and Electro-osmotic Flow.

J Phys Chem Lett

January 2025

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.

Efficient capture of single-stranded DNA (ssDNA) is crucial for high-throughput sequencing, which influences the speed and accuracy of genetic analysis. Electrophoresis (EP) and electro-osmotic flow (EOF) have a significant impact on the translocation behavior of ssDNA through the nanopore. Experimentally, dynamically tracking these two effects remains challenging, and conventional numerical methods also struggle to capture their dynamic properties in the presence of DNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!