Labyrinthic recesses projecting to the subependymal tissue have been observed in the ependyma of the III ventricle in close relation to the neurons of the hypothalamic paraventricular nucleus in the turtle Mauremys caspica. There seems to be evidence of a direct contact between the paraventricular nucleus neurons and the cerebrospinal fluid whose physiological significance is discussed in the present work.
Download full-text PDF |
Source |
---|
Am J Physiol Endocrinol Metab
January 2025
Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain.
The established dogma about regulation of feeding is based on the interaction amongst hypothalamic orexigenic and anorexigenic neuropeptides. However, the molecular underpinnings of those interactions remain unclear. A recent article published in by first demonstrated that the transition between hunger and satiety depends on the regulation of 3',5'-cyclic adenosine monophosphate (cAMP) in the paraventricular nucleus of the hypothalamus (PVH) providing novel insights on the spatial and temporal basis by which neuropeptides act.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Pain Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
Prosocial behaviors are advantageous to social species, but the neural mechanism(s) through which others receive benefit remain unknown. Here, we found that bystander mice display rescue-like behavior (tongue dragging) toward anesthetized cagemates and found that this tongue dragging promotes arousal from anesthesia through a direct tongue-brain circuit. We found that a direct circuit from the tongue → glutamatergic neurons in the mesencephalic trigeminal nucleus (MTN) → noradrenergic neurons in the locus coeruleus (LC) drives rapid arousal in the anesthetized mice that receive the rescue-like behavior from bystanders.
View Article and Find Full Text PDFJ Biol Methods
November 2024
Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States.
Background: Current multimodal neuroimaging plays a critical role in studying clinical conditions such as cardiovascular disease, major depression, and other disorders related to chronic stress. These conditions involve the brainstem-hypothalamic network, specifically the locus coeruleus (LC), dorsal vagal complex (DVC), and paraventricular nucleus (PVN) of the hypothalamus, collectively referred to as the "DVC-LC-PVN circuitry." This circuitry is strongly associated with the norepinephrine (NE) and epinephrine (E) neurotransmitter systems, which are implicated in the regulation of key autonomic functions, such as cardiovascular and respiratory control, stress response, and cognitive and emotional behaviors.
View Article and Find Full Text PDFPLoS Biol
January 2025
Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary.
A single exposure to a stressful event can result in enduring changes in behaviour. Long-term modifications in neuronal networks induced by stress are well explored but the initial steps leading to these alterations remain incompletely understood. In this study, we found that acute stress exposure triggers an immediate increase in the firing activity of calretinin-positive neurons in the paraventricular thalamic nucleus (PVT/CR+) that persists for several days in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!