The double perovskites are become the emerging aspirant to fulfill the demand of energy. Therefore, the optoelectronic, elastic and transport characteristics of Ba XMoO (X = Zn, Cd) are addressed systemically. The elastic constants show the mechanical stability. The nature of Ba ZnMoO is brittle and Ba CdMoO is ductile with large values of Debye temperature covalent bonding. The electronic band structures exhibit band gaps of 2.81 and 2.98 eV, which increase their importance for optoelectronic applications. The absorption of light energy, optical loss, refractive index, polarization of light energy are addressed in the energy range zero to 14 eV. Furthermore, thermoelectric characteristics are computed against chemical potentials at 300, 600, and 900 K. The chemical potential decides the p-type nature, with holes as majority carriers. The increasing temperature increases the power factor and figure of merit. Therefore, the optoelectronic and thermoelectric characteristics reveals the importance of studied DPs for energy applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.27209 | DOI Listing |
Sci Rep
December 2024
Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior, 474 011, India.
This study presents a comprehensive investigation into the intrinsic properties of RNiP (where R = Sm, Eu) filled skutterudite, employing the full-potential linearized augmented plane wave method within density functional theory (DFT) simulations using the WIEN2k framework. Structural, phonon stability, mechanical, electronic, magnetic, transport, thermal, and optical properties are thoroughly explored to provide a holistic understanding of these materials. Initially, the structural stability of SmNiP and EuNiP is rigorously evaluated through ground-state energy calculations obtained from structural optimizations, revealing a preference for a stable ferromagnetic phase over competing antiferromagnetic and non-magnetic phases.
View Article and Find Full Text PDFNanoscale Horiz
December 2024
Electrical and Computer Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, USA.
Antiferromagnetic materials have several unique properties, such as a vanishingly small net magnetization, which generates weak dipolar fields and makes them robust against perturbation from external magnetic fields and rapid magnetization dynamics, as dictated by the geometric mean of their exchange and anisotropy energies. However, experimental and theoretical techniques to detect and manipulate the antiferromagnetic order in a fully electrical manner must be developed to enable advanced spintronic devices with antiferromagnets as their active spin-dependent elements. Among the various antiferromagnetic materials, conducting antiferromagnets offer high electrical and thermal conductivities and strong electron-spin-phonon interactions.
View Article and Find Full Text PDFHeliyon
December 2024
Postdoctoral Innovation Practice Base, Chengdu Polytechnic, 83 Tianyi Street, Chengdu, Sichuan, 610041, PR China.
In this study, we present a novel approach to the development of thermally activated delayed fluorescence (TADF) molecules with potentials for organic light-emitting diode (OLED) applications, leveraging machine learning (ML) algorithms to guide the materials design process. Recognizing the imperative for high-efficiency, low-cost emissive materials, we integrated ML driven models with experimental characterization to expedite the discovery of TADF compounds. Initially, a database of ML-designed TADF molecules was employed, with samples being approved to possess optimized photophysical properties.
View Article and Find Full Text PDFNanophotonics
April 2024
Tokyo University of Agriculture and Technology Faculty of Engineering, Koganei, Tokyo, Japan.
Metasurfaces are artificial thin materials that achieve optical thickness through thin geometrical structure. This feature of metasurfaces results in unprecedented benefits for enhancing the performance of optoelectronic devices. In this study, we report that this metasurface feature is also essential to drive photo-thermoelectric conversion, which requires the accumulation of thermal energy and effective heat conduction.
View Article and Find Full Text PDFTopological materials attract a considerable research interest because of their characteristic band structure giving rise to various new phenomena in quantum physics. Besides this, they are tempting from a functional materials point of view: Topological materials bear potential for an enhanced thermoelectric efficiency because they possess the required ingredients, such as intermediate carrier concentrations, large mobilities, heavy elements etc. Against this background, this work reports an enhanced thermoelectric performance of the topological Dirac semimetal CdAs upon alloying the trivial semiconductor ZnAs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!