Background: Rodents form the largest order among mammals in terms of species diversity, and home range is the area where an individual normally moves during its normal daily activities. Information about rodent home ranges is paramount in the development of effective conservation and management strategies. This is because rodent home range varies within species and different habitats. In Uganda, tropical high altitude forests such as the Mabira Central Forest Reserve are experiencing continuous disturbance. However, information on rodent home range is lacking. Therefore, a two year Capture-Mark-Release (CMR) of rodents was conducted in the intact forest habitat: Wakisi, regenerating forest habitat: Namananga, and the depleted forest habitat: Namawanyi of Mabira Central Forest Reserve in order to determine the dominant rodent species, their home ranges, and factors affecting these home ranges. The home ranges were determined by calculating a minimum convex polygon with an added boundary strip of 5 m.

Results: Overall, the most dominant rodent species were: Lophuromys stanleyi, Hylomyscus stella, Praomys jacksoni Mastomys natalensis, Lophuromys ansorgei, and Lemniscomys striatus. H. stella dominated the intact forest habitat, while L. stanleyi was the most dominant both in the regenerating and the depleted forest habitats. L. stanleyi had a larger home range in the depleted forest, and the regenerating forest habitats, respectively. In the regenerating forest habitat, M. natalensis had a larger home range size, followed by L. stanleyi, and L. striatus. While in the intact forest habitat, H. stella had the largest home range followed by P. jacksoni. H. stella, L. striatus, L. stanleyi, M. natalensis, and P. jacksoni were most dominant during the wet season while L. ansorgei was relatively more dominant during the dry season. L. ansorgei, and P. jacksoni had a larger home range in the dry season, and a lower home range in the wet season. H. stella, L. stanleyi, M. natalansis and L.striatus had larger home ranges in the wet season, and lower home ranges in the dry season.   The home ranges of the dominant rodent species varied across the three habitats in Mabira central forest reserve ([Formula: see text], [Formula: see text]).

Conclusion: The significant variation in home ranges of the dominant rodent species in Mabira Central Forest Reserve depending on the type of habitat presupposes that the rodent management strategies in disturbed forest reserves should focus on the type of habitat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440881PMC
http://dx.doi.org/10.1186/s12862-023-02148-4DOI Listing

Publication Analysis

Top Keywords

forest habitat
24
dominant rodent
20
rodent species
20
mabira central
20
central forest
20
forest reserve
20
forest
15
intact forest
12
regenerating forest
12
depleted forest
12

Similar Publications

Determining the harvest location of timber is crucial to enforcing international regulations designed to protect natural resources and to tackle illegal logging and associated trade in forest products. Stable isotope ratio analysis (SIRA) can be used to verify claims of timber harvest location by matching levels of naturally occurring stable isotopes within wood tissue to location-specific ratios predicted from reference data ("isoscapes"). However, overly simple models for predicting isoscapes have so far limited the confidence in derived predictions of timber provenance.

View Article and Find Full Text PDF

The Species Group contains eleven species of terraranan frogs distributed from eastern Honduras to eastern Panama. All species have remarkable color pattern polymorphisms, which may contribute to potential taxonomic problems. We performed exhaustive sampling throughout the geographic distribution of the group to evaluate the phylogenetic relationships and biogeographic history of all named species based on two mitochondrial markers and nuclear ddRAD loci.

View Article and Find Full Text PDF

Introduction: Belowground bud banks (or bud-bearing organs) underlie grassland regeneration and community succession following ecosystem perturbations. Disturbances of nitrogen (N) enrichment, overgrazing, wildfire, and drought substantially affect grassland ecosystem succession and aboveground productivity.

Methods: To understand the magnitude and direction of the disturbances on the belowground bud banks, we conducted a meta-analysis on 46 peer-reviewed studies published from 1980 to 2023.

View Article and Find Full Text PDF

Soil microbial communities play a vital role in accelerating nutrient cycling and stabilizing ecosystem functions in forests. However, the diversity of soil microbiome and the mechanisms driving their distribution patterns along elevational gradients in montane areas remain largely unknown. In this study, we investigated the soil microbial diversity along an elevational gradient from 650 m to 3,800 m above sea level in southeast Tibet, China, through DNA metabarcode sequencing of both the bacterial and fungal communities.

View Article and Find Full Text PDF

Microbial Carbon Use Efficiency and Growth Rates in Soil: Global Patterns and Drivers.

Glob Chang Biol

January 2025

Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Göttingen, Germany.

Carbon use efficiency (CUE) of microbial communities in soil quantifies the proportion of organic carbon (C) taken up by microorganisms that is allocated to growing microbial biomass as well as used for reparation of cell components. This C amount in microbial biomass is subsequently involved in microbial turnover, partly leading to microbial necromass formation, which can be further stabilized in soil. To unravel the underlying regulatory factors and spatial patterns of CUE on a large scale and across biomes (forests, grasslands, croplands), we evaluated 670 individual CUE data obtained by three commonly used approaches: (i) tracing of a substrate C by C (or C) incorporation into microbial biomass and respired CO (hereafter C-substrate), (ii) incorporation of O from water into DNA (O-water), and (iii) stoichiometric modelling based on the activities of enzymes responsible for C and nitrogen (N) cycles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!