Ammonium toxicity affecting plant metabolism and development is a worldwide problem impeding crop production. Remarkably, rice (Oryza sativa L.) favours ammonium as its major nitrogen source in paddy fields. We set up a forward-genetic screen to decipher the molecular mechanisms conferring rice ammonium tolerance and identified rohan showing root hypersensitivity to ammonium due to a missense mutation in an argininosuccinate lyase (ASL)-encoding gene. ASL localizes to plastids and its expression is induced by ammonium. ASL alleviates ammonium-inhibited root elongation by converting the excessive glutamine to arginine. Consequently, arginine leads to auxin accumulation in the root meristem, thereby stimulating root elongation under high ammonium. Furthermore, we identified natural variation in the ASL allele between japonica and indica subspecies explaining their different root sensitivity towards ammonium. Finally, we show that ASL expression positively correlates with root ammonium tolerance and that nitrogen use efficiency and yield can be improved through a gain-of-function approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41477-023-01494-x | DOI Listing |
J Org Chem
January 2025
Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China.
We report a base-promoted, metal-free multicomponent tandem reaction, involving a [4 + 1 + 1] cycloaddition process between -substituted nitroarenes, aldehydes, and ammonium salts. Modifying the substituents on the nitroaromatic compounds effectively provides structurally diverse 2-substituted and 4-alkenylquinazolines with good to excellent yields (77%-90% and quinazoline 51 examples) and high tolerance for various inorganic ammonium salts (13 examples, such as NH·HO, NHCl, and NHHF). A new method for constructing 2,4-substituted quinazoline compounds with high selectivity from simple nitrogen source compounds was developed, and the reaction can be scaled up to a gram scale.
View Article and Find Full Text PDFMicrob Ecol
January 2025
Department of Biotechnology, Center for Research and Innovation in Multidisciplinary Active Sciences (CIICAM), Chiclayo, Peru.
Microbial biotechnology employs techniques that rely on the natural interactions that occur in ecosystems. Bacteria, including rhizobacteria, play an important role in plant growth, providing crops with an alternative that can mitigate the negative effects of abiotic stress, such as those caused by saline environments, and increase the excessive use of chemical fertilizers. The present study examined the promoting potential of bacterial isolates obtained from the rhizospheric soil and roots of the Asparagus officinalis cultivar UF-157 F2 in Viru, la Libertad, Peru.
View Article and Find Full Text PDFWater Res
January 2025
Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
The role of metal resistance on nitrogen metabolism function and community resilience against Cd is important for elucidating the evolutionary dynamics of key ecological functions in river ecosystems. In this study, the response of nitrogen transforming function to Cd exposure in river sediments from the Yangtze River Basin with varying levels of heavy metal contamination history (Cd-contaminated and Cd-free sediments) was compared to understand how Cd influenced nitrogen metabolism under varying metal resistance conditions. The results showed that chronic and persistent Cd pollution of sediments caused an elevation of transport efflux metal resistance genes (MRGs) and a reduction in the uptake MRGs, leading to a stronger tolerance to Cd for Cd-contaminated sediment than Cd-free ones.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.
Legumes are well-known for symbiotic nitrogen fixation, whereas associative nitrogen fixation for nonlegume plants needs more attention. Most associative nitrogen-fixing bacteria are applied in their original plant species and need further study for broad adaptation. Additionally, if isolated nitrogen-fixing bacteria could function under fertilizer conditions, it is often ignored.
View Article and Find Full Text PDFMicroorganisms
December 2024
School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China.
A novel bacterial strain, DGFC5, was isolated from a municipal sewage disposal system. It efficiently removed ammonium, nitrate, and nitrite under conditions of 5% salinity, without intermediate accumulation. Provided with a mixed nitrogen source, DGFC5 showed a higher utilization priority for NH-N.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!