AI Article Synopsis

  • Solid-state quantum emitters are becoming important for quantum networking, but traditional optical methods for measuring them are inefficient and hard to repeat on a large scale.
  • New spectroscopic techniques have been developed that allow for large-scale, automated characterization of color centers, including a method that tracks them using a global coordinate system for easy comparison across experiments.
  • An advanced cryogenic microscope was used to significantly speed up the resonant spectroscopy process, and automated methods now allow for the imaging of thousands of fields, which will improve the identification of useful quantum emitters for various applications.

Article Abstract

Solid-state quantum emitters have emerged as a leading quantum memory for quantum networking applications. However, standard optical characterization techniques are neither efficient nor repeatable at scale. Here we introduce and demonstrate spectroscopic techniques that enable large-scale, automated characterization of colour centres. We first demonstrate the ability to track colour centres by registering them to a fabricated machine-readable global coordinate system, enabling a systematic comparison of the same colour centre sites over many experiments. We then implement resonant photoluminescence excitation in a widefield cryogenic microscope to parallelize resonant spectroscopy, achieving two orders of magnitude speed-up over confocal microscopy. Finally, we demonstrate automated chip-scale characterization of colour centres and devices at room temperature, imaging thousands of microscope fields of view. These tools will enable the accelerated identification of useful quantum emitters at chip scale, enabling advances in scaling up colour centre platforms for quantum information applications, materials science and device design and characterization.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41563-023-01644-8DOI Listing

Publication Analysis

Top Keywords

quantum emitters
12
colour centres
12
optical characterization
8
solid-state quantum
8
characterization colour
8
colour centre
8
quantum
6
characterization
5
colour
5
large-scale optical
4

Similar Publications

Controlling the light emitted by individual molecules is instrumental to a number of advanced nanotechnologies ranging from super-resolution bioimaging and molecular sensing to quantum nanophotonics. Molecular emission can be tailored by modifying the local photonic environment, for example, by precisely placing a single molecule inside a plasmonic nanocavity with the help of DNA origami. Here, using this scalable approach, we show that commercial fluorophores may experience giant Purcell factors and Lamb shifts, reaching values on par with those recently reported in scanning tip experiments.

View Article and Find Full Text PDF

Manipulating the optical landscape of single quantum dots (QDs) is essential to increase the emitted photon output, enhancing their performance as chemical sensors and single-photon sources. Micro-optical structures are typically used for this task, with the drawback of a large size compared to the embedded single emitters. Nanophotonic architectures hold the promise to modify dramatically the emission properties of QDs, boosting light-matter interactions at the nanoscale, in ultracompact devices.

View Article and Find Full Text PDF

The application of temperature-compensated photonic device is hampered by poor accuracy and overly simplistic functions of propagation in photonic integrated circuits (PICs) field. Herein, we report a new library of donor-acceptor metal-organic framework (D-A MOF) with thermally activated delayed fluorescence (TADF) and the fabricating of temperature-compensated photonic device by virtue of the unique temperature response character of TADF emitters. Highly tunable through-space charge transfer (TSCT) of TADF was realized within the D-A MOFs through a novel strategy that synergistically combines the internal heavy atom effect (HAE) with an external HAE, induced by the incorporation of heavy atoms into different components, achieving the regulable photophysical indicators including adjustable PL wavelength (534 to 592 nm) and surging quantum yield (5.

View Article and Find Full Text PDF

Visible-light absorbing metal-free organic dyes are of increasing demand for various optoelectronic applications because of their great structure-function tunability through chemical means. Several dyes also show huge potential in triplet photosensitization, generating reactive singlet oxygen. Understanding the structure-property relationships of many well-known fluorescein dyes is of paramount importance in designing next-generation energy efficient dyes, which is currently limited.

View Article and Find Full Text PDF

Versatile Thermally Activated Delayed Fluorescence Material Enabling High Efficiencies in both Photodynamic Therapy and Deep-Red/NIR Electroluminescence.

ACS Nano

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China.

Thermally activated delayed fluorescence (TADF) materials have received increasing attention from organic electronics to other related fields, such as bioapplications and photocatalysts. However, it remains a challenging task for TADF emitters to showcase the versatility concurrent with high performance in multiple applications. Herein, we first present such a proof-of-concept TADF material, namely, QCN-SAC, through strategically manipulating exciton dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!