Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Herein, we demonstrate the feasibility of a three-dimensional printed chitosan (CS)-poly(vinyl alcohol) (PVA)-gelatin (Gel) hydrogel incorporating the antimicrobial drug levofloxacin (LEV) as a potential tissue engineering scaffold. Hydrogels were prepared by physically cross-linking the polymers, and the printability of the prepared hydrogels was determined. The hydrogel with 3% w/v of CS, 3% w/v of PVA, and 2% w/v of Gel presented the best printability, producing smooth and uniform scaffolds. The integrity of 3D-printed scaffolds was improved via a neutralization process since after testing three different neutralized agents, i.e., NH vapors, EtOH/NaOH, and KOH solutions. It was proved that the CS/PVA/Gel hydrogel was formed by hydrogen bonds and remained amorphous in the 3D-printed structures. Drug loading studies confirmed the successful incorporation of LEV, and its in vitro release continued for 48 h. The cytotoxicity/cytocompatibility tests showed that all prepared scaffolds were cytocompatible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.3c00362 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!