Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Scalar (J) couplings constitute one of vital features observed in NMR spectroscopy and show valuable information for molecular structure elucidation and conformation analysis. However, existing J coupling measurement techniques are generally confined by the concerns of resolution, SNR, and experimental efficiency. Herein, we exploit an efficient 2D NMR protocol to deal with the above concerns by enabling rapid, sensitive, and high-resolution J coupling extraction. This protocol delivers full-resolved pure shift 2D absorption-mode spectroscopy to gain great convenience for efficient coupling measurements on overcrowded NMR signals. Resulting from band selective signal evolution, this protocol ensures high signal intensity with full magnetization preservation to meet the demand on probing low-concentration samples. This protocol focuses on accessing coupling information between specific two coupled spin families, and it is not applicable to all possible spin systems. Besides, it adopts echo-train selective refocusing acquisition to accelerate pure shift 2D J-edited implementations into pseudo-2D acquisition, and thus holding the experimental efficiency similar to conventional SERF experiments. Therefore, this study presents a promising tool for efficient extraction of J coupling networks, and takes an important step for coupling measurement techniques with wide applications on molecular conformation elucidation and stereochemical configuration analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2023.341682 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!