Phylogeny and genetic variations of the three genome compartments in haptophytes shed light on the rapid evolution of coccolithophores.

Gene

Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China. Electronic address:

Published: December 2023

Haptophyte algae, including coccolithophores, play key roles in global carbon cycling and ecosystem. They exhibit exceptional morphological and functional diversity. However, their phylogeny is mostly based on short markers and genome researches are always limited to few species, hindering a better understanding about their evolution and diversification. In this study, by assembling 69 new plastid genomes, 65 new mitochondrial genomes, and 55 nuclear drafts, we systematically analyzed their genome variations and built the most comprehensive phylogenies in haptophytes and Noelaerhabdaceae, with the latter is the family of the model coccolithophore Emiliania huxleyi. The haptophyte genomes vary significantly in size, gene content, and structure. We detected phylogenetic incongruence of Prymnesiales between genome compartments. In Noelaerhabdaceae, by including Reticulofenestra sessilis and a proper outgroup, we found R. sessilis was not the basal taxon of this family. Noelaerhabdaceae strains have very similar genomic features and conserved sequences, but different gene content and dynamic structure. We speculate that was caused by DNA double-strand break repairs. Our results provide valuable genetic resources and new insights into the evolution of haptophytes, especially coccolithophores.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2023.147716DOI Listing

Publication Analysis

Top Keywords

genome compartments
8
gene content
8
phylogeny genetic
4
genetic variations
4
variations three
4
genome
4
three genome
4
compartments haptophytes
4
haptophytes light
4
light rapid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!