Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
TIAR, is a nucleic acid binding protein involved in the formation of cytoplasmic foci known as stress granules, in which mRNA translation is temporarily blocked in response to stressful conditions. TIAR is used as stress granules molecular marker in vertebrates, but it is not so deeply investigated in invertebrates, especially in marine organisms. In the present work, we investigated the role of TIAR in the colonial ascidian Botryllus schlosseri during its non-embryonic development, featured by the cyclical renewal of the colony. We studied the extent of transcription during the colonial blastogenetic cycle and the location of the transcripts in Botryllus tissues. Using an anti-TIAR antibody specific for ascidians, by immunocytochemistry and immunohistochemistry assays, we studied the expression of the protein in haemolymph cells and body tissues and by transmission electron microscopy we identified its subcellular localisation. The anti-TIAR antibody was also microinjected in the circulatory system of B. schlosseri to study its effect on non-embryonic development and immune responses. Results indicate a delay in the progression of the blastogenetic cycle in injected colonies. In addition, degranulation of circulating cytotoxic cells and phagocytosis by professional, circulating phagocytes, two fundamental processes of innate immunity, were also negatively affected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2023.108999 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!