The effect of alginate oligosaccharides on intestine barrier function and Vibrio parahaemolyticus infections in the white shrimp Litopenaeus vannamei.

Fish Shellfish Immunol

Marine College, Shandong University, Weihai, Shandong, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong, China. Electronic address:

Published: October 2023

The intestine is a host-pathogen interaction site and improved intestinal barrier function help to prevent disease in shrimp. Alginate oligosaccharides (AOS) are derived from resourceful brown algae. The intestine protection properties of AOS were widely recognized, and their benefits in fish have been reported. Nevertheless, there are no reports on AOS in shrimp and other crustaceans. In the present work, we measured the effects of AOS on growth performance and disease resistance in the white shrimp Litopenaeus vannamei and investigated their effects on intestinal health. Shrimps with an initial weight of about 2 g were fed with diets supplemented with 0 (control), 0.07%, 0.2%, 0.6%, or 1.2% of AOS for 56 days and were sampled and challenged with Vibrio parahaemolyticus. Dietary AOS did not significantly influence weight gain or feed utilization (P > 0.05). However, AOS considerably decreased the seven-day cumulative mortality after the challenge at any dose (P < 0.05). Dietary AOS improved the intestinal structure, significantly boosted the intestinal villus height at 0.6% and 1.2% levels, and increased intestinal wall thickness by 0.2%, 0.6%, and 1.2%. The alkaline phosphatase and maltase activities were also increased, suggesting that AOS improved the intestinal condition. Redox homeostasis in intestinal was improved by AOS, as expressed by the enhanced total antioxidant capacity and decreased malonaldehyde content, partly due to the increased superoxide dismutase and catalase activities. Compared with the antioxidant system, AOS's stimulating effects on immunity were more significant. At any level, AOS significantly activated lysozyme activity, the expression of propo and two antimicrobial peptide genes (pen-3 and crusin). However, the lowest concentration of AOS did not stimulate the gene expression of all three assayed pattern recognition receptors (LGBP, Toll, and IMD), and only the highest concentration of AOS increased the expression of imd. These findings suggest that AOS are highly efficient immunostimulants, and various immune pathways in shrimp are differentially sensitive to AOS. Finally, our findings suggest that AOS significantly alter the gut microbiota and their relative abundance at the phylum, family, and genus levels. In conclusion, AOS significantly enhances disease resistance in L. vannamei, possibly attributed to improved intestinal development, increased intestinal immunity and altered microbiota. These findings could provide a basis for future studies on the practical use of AOS and its mechanisms of action.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2023.109011DOI Listing

Publication Analysis

Top Keywords

alginate oligosaccharides
8
barrier function
8
vibrio parahaemolyticus
8
white shrimp
8
shrimp litopenaeus
8
litopenaeus vannamei
8
aos
7
oligosaccharides intestine
4
intestine barrier
4
function vibrio
4

Similar Publications

Alginate oligosaccharides (AOS) have gained attention for their capacity to regulate human health as prebiotics. Osteosarcopenia is a progressive disease of the musculoskeletal system and result in heavy burden of patients. Studies suggest that gut microbiota is involved in the pathogenesis of osteosarcopenia, whether AOS can improve the symptoms of osteosarcopenia by modulating gut microbiota remains to be elucidated.

View Article and Find Full Text PDF

Layer-by-Layer (LbL) self-assembly encapsulation is a promising technology for the protection and delivery of lactic acid bacteria. However, laboratory-scale encapsulation is often time-consuming, involves intensive protocols tailored for small-scale operations, requires substantial amounts of energy and water, and results in a low yield of encapsulated biomass. Scaling-up this process to a bench-bioreactor scale is not simply a matter of increasing culture volume as different key parameters (not particularly relevant at lab scale) become critical, including biomass production, the number of polymer layers, and the biomass-to-polymer mass ratio.

View Article and Find Full Text PDF

A bifunctional endolytic alginate lyase with two different lyase catalytic domains from sp. H204.

Front Microbiol

December 2024

Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.

Alginate lyases can fully degrade alginate into various size-defined unsaturated oligosaccharide products by -elimination. Here, we identified the bifunctional endolytic alginate lyase Aly35 from the marine bacterium sp. Strain H204.

View Article and Find Full Text PDF

Genome Analysis of a Polysaccharide-Degrading Bacterium sp. HZ11 and Degradation of Alginate.

Mar Drugs

December 2024

Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264000, China.

Marine bacteria are crucial sources of alginate lyases, which play an essential role in alginate oligosaccharide (AOS) production. This study reports the biochemical characteristics of a new species of the genus, sp. HZ11.

View Article and Find Full Text PDF

An Oral HS Responsive CuO Nanozyme Platform with Strong ROS/HS Scavenging Capacity for the Treatment of Colitis.

ACS Appl Mater Interfaces

January 2025

Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.

Inflammatory bowel disease involves excess reactive oxygen species (ROS) and hydrogen sulfide (HS) at inflammatory sites. Nanozyme-mediated ROS and HS scavenging therapy is promising for colitis treatment. Here, we synthesized a multiple ROS scavenging CuO nanoparticle and first explored its HS scavenging capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!