Within the brain, a pro-inflammatory response is essential to prevent clinical disease due to Toxoplasma gondii reactivation. Infection in the immunocompromised leads to lethal Toxoplasmic encephalitis while in the immunocompetent, there is persistent low-grade inflammation which is devoid of clinical symptoms. This signifies that there is a well-balanced and regulated inflammatory response to T. gondii in the brain. T cells are the dominant immune cells that prevent clinical disease, and this is mediated through the secretion of effector molecules such as perforins and IFN-γ. The presence of cognate antigen, the expression of survival cytokines, and the alteration of the epigenetic landscape drive the development of memory T cells. However, specific extrinsic signals that promote the formation and maintenance of memory T cells within tissue are poorly understood. During chronic infection, there is an increase in extracellular glutamate that, due to its function as an excitatory neurotransmitter, is normally tightly controlled in the CNS. Here we demonstrate that CD8 T cells from the T. gondii-infected brain parenchyma are enriched for metabotropic glutamate receptors (mGluR's). Characterization studies determined that mGluR expression by CD8 T cells defines a distinct memory population at the transcriptional and protein level. Finally, using receptor antagonists and agonists we demonstrate mGluR signaling is required for optimal CD8 T cell production of the effector cytokine IFNγ. This work suggests that glutamate is an important environmental signal of inflammation that promotes T cell function. Understanding glutamate's influence on T cells in the brain can provide insights into the mechanisms that govern protective immunity against CNS-infiltrating pathogens and neuroinflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2023.08.015DOI Listing

Publication Analysis

Top Keywords

metabotropic glutamate
8
memory population
8
prevent clinical
8
clinical disease
8
memory cells
8
cd8 cells
8
cells
7
group metabotropic
4
glutamate
4
glutamate receptor
4

Similar Publications

Depression is one of the most common non-motor symptoms in Parkinson's disease (PD) and the hyperactivity of the lateral habenula (LHb) may contribute to depression. The present study was performed to investigate the effects and mechanisms of group I metabotropic glutamate receptors (mGluRs) in the LHb on PD-related depressive-like behaviors. Unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc) were used to establish the PD rat model.

View Article and Find Full Text PDF

GPCR oligomerization across classes: A2AR-mediated regulation of mGlu5R activation.

Int J Biol Macromol

January 2025

Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal. Electronic address:

The adenosine A receptor (AR), a class A GPCR, is a known player in neurological diseases, including Parkinson's disease and Alzheimer's disease, and is also implicated in SARS-CoV-2 infection. Recent studies have revealed its oligomerization with metabotropic glutamate receptor type 5 (mGluR), a class C G protein coupled receptor (GPCR) that exists in the homodimeric form. Simultaneous activation of both receptors synergistically enhances mGluR-mediated effects in the hippocampus.

View Article and Find Full Text PDF

The anti-dyskinetic effect of the clinic-ready mGluRpositive allosteric modulator AZD8529 in the 6-OHDA-lesioned rat.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada.

L-3,4-dihydroxyphenylalanine (L-DOPA) remains the main treatment for motor symptoms of Parkinson's disease (PD). However, chronic use is associated with the development of complications such as L-DOPA-induced dyskinesia. We previously demonstrated that LY-487,379, a highly selective metabotropic glutamate receptor 2 (mGluR2) positive allosteric modulator (PAM), reduces the severity of L-DOPA-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD, without interfering with the anti-parkinsonian action of L-DOPA.

View Article and Find Full Text PDF

Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings.

View Article and Find Full Text PDF

Non-canonical Roles of Complement in the CNS: From Synaptic Organizer to Presynaptic Modulator of Glutamate Transmission.

Curr Neuropharmacol

January 2025

Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy.

The central nervous system (CNS) is not an immune-privileged compartment, but it is intimately intertwined with the immune system. Among the components shared by the two compartments is the complement, a main constituent of innate immunity, which is also produced centrally and controls the development and organization of synaptic connections. Complement is considered a doubled-faced system that, besides controlling the physiological development of the central network, also subserves synaptic engulfment pivotal to the progression of neurodegenerative diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!