Optimized osteogenesis of porcine bone-derived xenograft through surface coating of magnesium-doped nanohydroxyapatite.

Biomed Mater

Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, People's Republic of China.

Published: August 2023

As one of the key factors influencing the outcome of guided bone regeneration, the currently used xenografts possess insufficient capability in osteogenesis. With the aim of improving the osteogenic performance of xenografts, porcine bone-derived hydroxyapatite (PHA) was prepared and subsequently coated by magnesium-doped nano hydroxyapatite (nMgHA, 10%, 20%, and 30% of Mg/Ca + Mg) through a straightforward and cost-efficient approach. The physiochemical and biological properties of nMgHA/PHAs were examinedand. The inherent three-dimensional (3D) porous framework with the average pore size of 300 μm was well preserved in nMgHA/PHAs. Meanwhile, excess magnesium released from the so-called 'surface pool' of PHA was verified. In contrast, slower release of magnesium at lower concentrations was detected for nMgHA/PHAs. Significantly more newly-formed bone and microvessels were observed in 20%nMgHA/PHA than the other specimens. With the limitations of the present study, it could be concluded that PHA coated by 20%nMgHA may have the optimized osteogenic performance due to the elimination of the excess magnesium from the 'surface pool', the preservation of the inherent 3D porous framework with the favorable pore size, and the release of magnesium at an appropriate concentration that possessed osteoimmunomodulatory effects on macrophages.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-605X/acf25eDOI Listing

Publication Analysis

Top Keywords

porcine bone-derived
8
osteogenic performance
8
porous framework
8
pore size
8
excess magnesium
8
'surface pool'
8
release magnesium
8
optimized osteogenesis
4
osteogenesis porcine
4
bone-derived xenograft
4

Similar Publications

Biogenic hydroxyapatite is known for its osteoinductive potential due to its similarity to human bone and biocompatibility, but insufficient vascularization compared to autogenous bone during early implantation limits bone integration and osteogenesis. Fluorine has been shown to improve hydroxyapatite's mechanical properties and the coupling of osteogenic and angiogenic cells. In this study, fluorine-modified biogenic hydroxyapatite (FPHA) with varying fluorine concentrations was prepared and tested for its ability to promote vascularized osteogenesis.

View Article and Find Full Text PDF

Collagen-based membranes are class III-medical devices widely used in dental surgical procedures to favour bone regeneration. Here, we aimed to provide biophysical and biochemical data on this type of devices to support their optimal use and design/manufacturing. To the purpose, four commercial, non-crosslinked collagen-based-membranes, obtained from various sources (equine tendon, pericardium or cortical bone tissues, and porcine skin), were characterized in vitro.

View Article and Find Full Text PDF

Bone related diseases such as osteoporosis, osteoarthritis, metastatic bone cancer, osteogenesis imperfecta, and Paget's disease, are primarily treated with pharmacologic therapies that often exhibit limited efficacy and substantial side effects. Bone injuries or fractures are primarily repaired with biocompatible materials that produce mixed results in sufficiently regenerating healthy and homogenous bone tissue. Each of these bone conditions, both localized and systemic, use different strategies with the same goal of achieving a healthy and homeostatic bone environment.

View Article and Find Full Text PDF

Objectives: The purpose of this study was to evaluate the outcomes of implants placed in horizontally augmented alveolar ridges using porcine bone grafts and to investigate the long-term stability of the porcine bone grafts.

Materials And Methods: A retrospective analysis was conducted on 49 sites that underwent horizontal ridge augmentation using porcine bone grafts and implant placement with a follow-up period longer than 5 years. Furthermore, additional analysis was conducted on 24 sites where porcine bone grafts were used exclusively for horizontal ridge augmentation and implant placement.

View Article and Find Full Text PDF

Iron-doped swine bone char as hydrogen peroxide activator for efficient removal of acetaminophen in water.

Sci Total Environ

February 2024

Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:

Bone char is a functional material obtained by calcining animal bones and is widely used for environmental remediation. In this work, iron was inserted into porcine bone-derived bone char via ion exchange to synthesize iron-doped bone char (Fe-BC) for efficient catalysis of hydrogen peroxide. This is the first time that Fe-BC has been used as a catalyst for the activation of HO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!