During early development, extrinsic cues prompt a collection of pluripotent cells to begin the extensive process of cellular differentiation that gives rise to all tissues in the mammalian embryo, a process known as gastrulation. Advances in stem cell biology have resulted in the generation of stem cell-based in vitro models of mammalian gastrulation called gastruloids. Gastruloids and subsequent gastruloid-based models are tractable, scalable and more accessible than mammalian embryos. As such, they have opened an unprecedented avenue for modelling in vitro self-organisation, patterning and fate specification. This review focuses on discussing the recent advances of this rapidly moving research area, clarifying what structures they model and the underlying signal hierarchy. We highlight the exciting potential of these models and where the field might be heading.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gde.2023.102102 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697.
Loss-of-function sequence variants in , which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.
View Article and Find Full Text PDFJ Nurs Adm
December 2024
Author Affiliations: Research Nurse Scientist (Dr Partridge), Roper St Francis Healthcare; Associate Professor (Dr Jorgenson), College of Nursing, Charleston Southern University; Associate Professor (Dr Johnson), College of Nursing, Medical University of South Carolina; and Director of Nursing Excellence (Dr Lott), Roper St Francis Healthcare, Charleston, South Carolina.
Objective: The purpose of this cross-sectional descriptive study was to examine the relationship of professional governance, resilience, and empowerment among RNs in clinical practice in 1 healthcare system.
Background: Given the emotional and physical demands of nursing, especially in recent years, exploring ways that hope-inducing and resilience-building models can support professional practice is vital to the current and future nursing workforce.
Methods: An anonymous survey consisting of demographic questions, the Adult Hope Scale, Connor-Davidson Resilience Scale, and the Conditions for Work Effectiveness Questionnaire II was offered to 1450 RNs in a nonprofit community-based healthcare system for volunteer participation.
J Nurs Adm
December 2024
Author Affiliations: Research Associate (Dr Keys), The Center for Health Design, Concord, California; National Senior Director (Dr Fineout-Overholt), Evidence-Based Practice and Implementation Science, at Ascension in St. Louis, MO.
Objective: Relationships among coworker and patient visibility, reactions to physical work environment, and work stress in ICU nurses are explored.
Background: Millions of dollars are invested annually in the building or remodeling of ICUs, yet there is a gap in understanding relationships between the physical layout of nursing units and work stress.
Methods: Using a cross-sectional, correlational, exploratory, predictive design, relationships among variables were studied in a diverse sample of ICU nurses.
Proc Natl Acad Sci U S A
January 2025
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.
Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.
Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!