Comprehensive transcriptomic and metabolomic analysis of the effect of feed restriction on duck sternal development.

Poult Sci

Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang District, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Wenjiang District, Chengdu, Sichuan 611130, P.R. China. Electronic address:

Published: October 2023

AI Article Synopsis

  • - Skeletal development in poultry, particularly ducks, is affected by feeding management practices, where constant free feeding can lead to an imbalance in bone growth and weight gain, while feed restriction can help address this issue.
  • - A study examined the impact of varying levels of feed restriction (60%, 70%, 80%, and free feeding) on the sternum development of ducks at 7 and 8 weeks, finding that while restricted feeding reduced muscle and bone weights initially, those fed at 60% showed better sternum growth by week 8, indicating a phenomenon called catch-up growth.
  • - Through RNA-seq and metabolomic analysis, the study identified key genes and metabolites related to bone development and anti-aging, revealing

Article Abstract

Skeletal characteristics are important to the growth and development of poultry. In feeding management, constant free feeding (FF) of poultry may lead to imbalance between bone development and weight gain. Feed restriction (FR), to a certain extent, is one way to solve this problem. However, the effect of feed restriction on poultry bone development needs further elucidation at the molecular level. Therefore, in the present study, we investigated the effects of different levels of feed restriction (60% FR, 70% FR, 80% FR, and FF) on the sternum development of ducks at 7 and 8 wk old. In the seventh wk, with increasing feed restriction, the values of traits including body weight, breast muscle weight, sternal weight, keel length, and calcified keel length decreased. However, in the eighth wk, the sternum weight and keel length of ducks treated with 60% FR were unexpectedly higher than those of FF individuals, indicative of catch-up growth. Then, we conducted RNA-seq and metabolomic analysis on sterna from 7- and 8-wk-old FF and 60% FR ducks. The results identified multiple differentially expressed genes (DEGs) associated with sternum development that were influenced by feed restriction. Among them, we found that the mRNA expression levels of the chondroitin sulfate synthase 3 (CHSY3) and annexin A2 (ANXA2) which are involved in glycosaminoglycan biosynthesis and bone mineralization, had smaller changes over time under FR treatment than under FF treatment, implying that the FR treatment to a certain extent prevented the premature calcification and prolonged the development time of duck sternum. In addition, the metabolomic and integrative analyses revealed that several antiaging-related metabolites and genes were associated with sternal catch-up growth. Pyrimidine metabolism was identified as the most significant pathway in which most differential metabolites (DMs) between FF and 60% FR were enriched. The results from integrative analysis revealed that the content and expression of 4-aminobutyric acid (GABA) and its related genes showed relatively higher activity in the 60% FR group than in the FF group. The present study identifies multiple biomarkers associated with duck sternum development that are influenced by feed restriction and suggests the potential mechanism of feed restriction-associated duck sternal catch-up growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465956PMC
http://dx.doi.org/10.1016/j.psj.2023.102961DOI Listing

Publication Analysis

Top Keywords

feed restriction
28
sternum development
12
keel length
12
catch-up growth
12
metabolomic analysis
8
feed
8
duck sternal
8
development
8
bone development
8
weight keel
8

Similar Publications

Changes in the intestinal microbiota of broiler chicken induced by dietary supplementation of the diatomite-bentonite mixture.

BMC Vet Res

January 2025

Specialized Mining Company "Górtech" Sp. z o.o, ul. Wielicka 50, Krakow, 30-552, Poland.

Background: Diatomite is a source of biologically available silicon but in feed industry its insecticide and anti-caking properties have been also widely recognized. The aim of the study was to evaluate the effect of dietary diatomite-bentonite mixture (DBM) supplementation on the quantitative and qualitative composition of the bacterial microbiome of the broiler chicken gut. The trial was carried out on 960 Ross 308 broiler chickens divided into 2 experimental groups throughout the entire rearing period lasting 6 weeks.

View Article and Find Full Text PDF

is a natural antioxidant product that has the ability to improve the performance of poultry. Therefore, the present study aimed to evaluate the effect of using as a feed additive in broiler diets. A total of 252 daily male Ross 308 chicks were randomly assigned to six groups.

View Article and Find Full Text PDF

It is currently uncertain how selection of more efficient animals might impact other traits such as resilience (which, in this context, is defined as the ability of an animal to sustain or revert quickly to its previous production level and health status after a disturbance), especially in small ruminants. However, improving, or at least maintaining, resilience is of utmost importance to ensure livestock production in the face of external perturbances, which are expected to become more prevalent in the near future due to climate change and global instability. This study was conducted to investigate whether a nutritional challenge consisting of animals receiving only 70% of their voluntary feed intake (DMI) for 26 d, might differentially affect the response of high- and low-feed efficiency (FE) sheep.

View Article and Find Full Text PDF

The Ability to Digest Cellulose Can Significantly Improve the Growth and Development of Silkworms.

Insects

December 2024

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China.

Cellulose is essential in the growth and development of herbivores. However, its limited utilization by herbivores is a key factor restricting their feed conversion rates. Cellulase can hydrolyze cellulose into glucose, and the addition of exogenous cellulase preparations to feed is an effective method for improving the cellulose utilization rate of ruminants.

View Article and Find Full Text PDF

Objective: The objective of this review will be to synthesize the qualitative evidence on factors that influence direct breastfeeding of preterm infants in neonatal wards and the provision of breastfeeding support.

Introduction: Breastmilk is critical for the health of preterm neonates, and infants who directly feed at the breast are more likely to receive breastmilk exclusively for longer periods. Direct breastfeeding is associated with improved maternal coping and development of maternal identity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!