Monocular endoscopic 6-DoF camera tracking plays a vital role in surgical navigation that involves multimodal images to build augmented or virtual reality surgery. Such a 6-DoF camera tracking generally can be formulated as a nonlinear optimization problem. To resolve this nonlinear problem, this work proposes a new pipeline of constrained evolutionary stochastic filtering that originally introduces spatial constraints and evolutionary stochastic diffusion to deal with particle degeneracy and impoverishment in current stochastic filtering methods. With its application to endoscope 6-DoF tracking and validation on clinical data including more than 59,000 endoscopic video frames acquired from various surgical procedures, the experimental results demonstrate the effectiveness of the new pipeline that works much better than state-of-the-art tracking methods. In particular, it can significantly improve the accuracy of current monocular endoscope tracking approaches from (4.83 mm, 10.2) to (2.78 mm, 7.44).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2023.102928DOI Listing

Publication Analysis

Top Keywords

evolutionary stochastic
12
stochastic filtering
12
monocular endoscope
8
endoscope 6-dof
8
6-dof tracking
8
constrained evolutionary
8
6-dof camera
8
camera tracking
8
tracking
6
6-dof
4

Similar Publications

Across mammals, fertility and offspring survival are often lowest at the beginning and end of females' reproductive careers. However, extrinsic drivers of reproductive success-including infanticide by males-could stochastically obscure these expected age-related trends. Here, we modelled reproductive ageing trajectories in two cercopithecine primates that experience high rates of male infanticide: the chacma baboon () and the gelada ().

View Article and Find Full Text PDF

Transposable elements are DNA sequences that can move and replicate within genomes. Broadly, there are 2 types: autonomous elements, which encode the necessary enzymes for transposition, and nonautonomous elements, which rely on the enzymes produced by autonomous elements for their transposition. Nonautonomous elements have been proposed to regulate the numbers of transposable elements, which is a possible explanation for the persistence of transposition activity over long evolutionary times.

View Article and Find Full Text PDF

Unlabelled: Neurophysiology studies propose that predictive coding is implemented via alpha/beta (8-30 Hz) rhythms that prepare specific pathways to process predicted inputs. This leads to a state of relative inhibition, reducing feedforward gamma (40-90 Hz) rhythms and spiking to predictable inputs. We refer to this model as predictive routing.

View Article and Find Full Text PDF

Replicator dynamics on heterogeneous networks.

J Math Biol

January 2025

Laboratory of Mathematics and Complex Systems, Ministry of Education, School of Mathematical Sciences, Beijing Normal University, Beijing, People's Republic of China.

Networked evolutionary game theory is a well-established framework for modeling the evolution of social behavior in structured populations. Most of the existing studies in this field have focused on 2-strategy games on heterogeneous networks or n-strategy games on regular networks. In this paper, we consider n-strategy games on arbitrary networks under the pairwise comparison updating rule.

View Article and Find Full Text PDF

Orchard: Building large cancer phylogenies using stochastic combinatorial search.

PLoS Comput Biol

December 2024

Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America.

Phylogenies depicting the evolutionary history of genetically heterogeneous subpopulations of cells from the same cancer, i.e., cancer phylogenies, offer valuable insights about cancer development and guide treatment strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!