Gaseous nitrous acid (HONO) is a critical source of hydroxyl radicals (OH) in the troposphere. While both direct and secondary sources contribute to atmospheric HONO, direct emissions have traditionally been considered minor contributors. In this study, we developed δN and δO isotopic fingerprints to identify six direct HONO emission sources and conducted a 1-y case study on the isotopic composition of atmospheric HONO at rural and urban sites. Interestingly, we identified that livestock farming is a previously overlooked direct source of HONO and determined its HONO to ammonia (NH) emission ratio. Additionally, our results revealed that spatial and temporal variations in atmospheric HONO isotopic composition can be partially attributed to direct emissions. Through a detailed HONO budget analysis incorporating agricultural sources, we found that direct HONO emissions accounted for 39~45% of HONO production in rural areas across different seasons. The findings were further confirmed by chemistry transport model simulations, highlighting the significance of direct HONO emissions and their impact on air quality in the North China Plain. These findings provide compelling evidence that direct HONO emissions play a more substantial role in contributing to atmospheric HONO than previously believed. Moreover, the δN and δO isotopic fingerprints developed in this study may serve as a valuable tool for further research on the atmospheric chemistry of reactive nitrogen gases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468620 | PMC |
http://dx.doi.org/10.1073/pnas.2302048120 | DOI Listing |
Sci Total Environ
January 2025
Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea; Research Center for Strategic Solutions for Environmental Blindspots in the Interest of Society, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea. Electronic address:
Observational studies of marine aerosols are essential for understanding the global aerosol budget and its environmental impacts. This study presents simultaneous in-situ measurements of major ionic components (Cl, NO, SO, NH, K, Ca, Na, and Mg) in aerosols and gaseous species (HCl, HNO, HONO, SO, and NH) over the North Pacific Ocean from July 4 to 15 and September 19 to October 3, 2022. Using high temporal resolution instruments aboard the Republic of Korea's icebreaker research vessel Araon, this study aimed to (1) report the spatial and temporal distributions of aerosols and gaseous species, (2) estimate the source contributions of continental anthropogenic pollutants, and (3) assess the influence of aerosol chemical composition and gaseous species on aerosol acidity and water content.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.
The photochemistry of nitrous acid (HONO) plays a crucial role in atmospheric chemistry as it serves as a key source of hydroxyl radicals (OH) in the atmosphere; however, our comprehension of the underlying mechanism for the photochemistry of HONO especially in the presence of water is far from being complete as the transient intermediates in the photoreactions have not been observed. Herein, we report the photochemistry of microsolvated HONO by water in a cryogenic N matrix. Specifically, the 1:1 hydrogen-bonded water complex of HONO was facially prepared in the matrix through stepwise photolytic O oxidation of the water complex of imidogen (NH-HO) via the intermediacy of the elusive water complex of peroxyl isomer HNOO.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS-Université Orléans-CNES, Orléans Cedex 2 45071, France.
The source of nitrous acid (HONO) and its importance in island or marine environments are poorly understood. Herein, based on comprehensive field measurements at a hilltop on Corsica Island, we find an inverse diel variation of HONO with higher concentrations during daytime. Night-time HONO budget analysis indicates significant HONO formation during air mass transport along the hillside.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
NO is a significant primary atmospheric pollutant that plays a key role in atmospheric chemistry. It serves as a crucial precursor to photochemical smog, acid rain, and secondary particulate matter and is instrumental in determining the atmospheric oxidation capacity. In this review, we focus on the heterogeneous chemistry of NO, which has been demonstrated to significantly influence the sources and sinks of various nitrogen-containing species through field measurements and model simulations.
View Article and Find Full Text PDFEnviron Pollut
January 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China. Electronic address:
As a vital precursor of hydroxyl radicals (OH), atmospheric nitrous acid (HONO) plays a significant role in tropospheric chemistry and the production of secondary pollutants. However, knowledge of its sources remains insufficient. To comprehensively investigate the HONO chemistry in polluted cities and alleviate O pollution, based on a comprehensive HONO-related field campaign in Zibo City, on the North China Plain, the parameterized formulas of additional HONO sources were validated in a box model (based on the default MCMv3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!