A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

End-to-end Prediction of EGFR Mutation Status with Denseformer. | LitMetric

Accurate genotyping of the epidermal growth factor receptor (EGFR) is critical for the treatment planning of lung adenocarcinoma. Currently, clinical identification of EGFR genotyping highly relies on biopsy and sequence testing which is invasive and complicated. Recent advancements in the integration of computed tomography (CT) imagery with deep learning techniques have yielded a non-invasive and straightforward way for identifying EGFR profiles. However, there are still many limitations for further exploration: 1) most of these methods still require physicians to annotate tumor boundaries, which are time-consuming and prone to subjective errors; 2) most of the existing methods are simply borrowed from computer vision field which does not sufficiently exploit the multi-level features for final prediction. To solve these problems, we propose a Denseformer framework to identify EGFR mutation status in a real end-to-end fashion directly from 3D lung CT images. Specifically, we take the 3D whole-lung CT images as the input of the neural network model without manually labeling the lung nodules. This is inspired by the medical report that the mutational status of EGFR is associated not only with the local tumor nodules but also with the microenvironment surrounded by the whole lung. Besides, we design a novel Denseformer network to fully explore the distinctive information across the different level features. The Denseformer is a novel network architecture that combines the advantages of both convolutional neural network (CNN) and Transformer. Denseformer directly learns from the 3D whole-lung CT images, which preserves the spatial location information in the CT images. To further improve the model performance, we designed a combined Transformer module. This module employs the Transformer Encoder to globally integrate the information of different levels and layers and use them as the basis for the final prediction. The proposed model has been tested on a lung adenocarcinoma dataset collected at the Affiliated Hospital of Zunyi Medical University. Extensive experiments demonstrated the proposed method can effectively extract meaningful features from 3D CT images to make accurate predictions. Compared with other state-of-the-art methods, Denseformer achieves the best performance among current methods using deep learning to predict EGFR mutation status based on a single modality of CT images.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2023.3307295DOI Listing

Publication Analysis

Top Keywords

egfr mutation
12
mutation status
12
lung adenocarcinoma
8
deep learning
8
final prediction
8
whole-lung images
8
neural network
8
egfr
7
denseformer
6
images
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!