The growth, reproduction, and metabolic activities of microorganisms can lead to blockages within porous media, a phenomenon commonly observed in landfill engineering. Termed as microbial plugging, this phenomenon is significantly influenced by the inherent permeability characteristics of the system. In this study, we propose a simulation model based on the Monod equation to elucidate the clogging process caused by microorganisms in one-dimensional pore channels. Our primary focus is on the application of this model in landfill bioreactor systems. We demonstrate that microbial clogging in these systems is predominantly affected by factors such as the maximum environmental carrying capacity and pore size. These factors are directly influenced by the presence of solid waste within the landfill. By offering a theoretical foundation for mitigating microbial clogging in pore channels of landfill bioreactor systems, this research has the potential to contribute to the development of more efficient and effective waste management practices. Microbial plugging is a hot research topic in the field of environmental geotechnical engineering. Previous papers often only considered the reduction of pore volumes, while neglecting the role of clogging and the uneven distribution of permeability. In this paper, we established a permeability model for porous media that considers microbial growth and plugging. This model can reflect the temporal variation of permeability with microbial growth and predict the spatial distribution of permeability. This paper can promote on the utilization of microbial plugging technology in landfills or solid waste.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10962247.2023.2248923 | DOI Listing |
Talanta
January 2025
College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
Monitoring reactive nitrogen species (RNS) in complex biological media is essential for evaluating the health status of living organisms; however, biofouling on the sensor surface restricts its applications. To overcome this issue, we developed an antifouling electrochemical sensing platform using copper-platinum bimetallic nanoparticles/N-doped biomass porous carbon fibres (Cu-PtNPs/N-BCF) for directly detecting peroxynitrite anion (ONOO), a major type of RNS. Cyclic voltammetry measurements demonstrated that the Cu-PtNPs/N-BCF-2 nanocomposite, synthesised at a molar ratio of 1:1 between Co and Zn, exhibited exceptional electrocatalytic activity for ONOO oxidation.
View Article and Find Full Text PDFPLoS One
January 2025
Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University (Ministry of Education & Hubei Province), Wuhan, Hubei, China.
This paper develops a finite element analysis model to investigate the seepage characteristics of cement sheaths, considering the flow properties of their porous medium. The model's applicability under various conditions was evaluated through grid sensitivity tests and model validation, indicating that it effectively captures the seepage behavior of cement sheaths with a reasonable degree of reliability. Key parameters, including cement sheath length, permeability, gap structure, pressure differential, and fluid properties, were analyzed using finite element methods to determine their impact on seepage flow.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China. Electronic address:
The interactions between microplastic-derived dissolved organic matter (MPs-DOM) and heavy metals (Cu, Pb, and Cd) regulate the complex environmental transport behavior of pollutants in terrestrial and aquatic environments. In this study, fluorescence excited emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) and electrospray ionization coupled Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) were employed to investigate the complexation mechanism of MPs-DOM with heavy metals, as well as the effects of different environmental occurrences of MPs-DOM on the transport behaviors of heavy metals in saturated porous medium. The findings demonstrated that MPs-DOM, particularly humic-like substances containing aromatic structures and various oxygen functional groups, could form stable complexes with heavy metals.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China; Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou, 450001, China. Electronic address:
Food safety problem caused by aflatoxins (AFs) has become a major concern worldwide. However, due to the complexity of food matrices and the low concentration of analytes, the accurate and sensitive determination of AFs and their precursors in the biosynthetic pathway is extremely challenging, so the development of efficient sample preparation techniques has been urgently required. This paper reviews the recent advances in sample preparation based on some emerging extraction media for the determination of AFs and their precursors in different food samples, including ionic liquids (ILs) and IL-based composites, metal-organic frameworks (MOFs) and covalent organic frameworks (COFs).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China. Electronic address:
Low-cost and effective electrocatalysts are critical for energy storage and conversion. Herein, iron(III) and vanadium(III) acetylacetonates were first adsorbed and confined in porous zeolitic imidazolate framework-8 (ZIF-8), which further cross-linked together by the methanol-induced-assembly. Following the pyrolysis, the FeVO nanoparticles were efficiently encapsulated within three-dimensional (3D) N-doped interconnected porous carbon, termed FeVO/NIPC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!