Spatially Resolved Proteomics Reveals Lens Suture-Related Cell-Cell Junctional Protein Distributions.

Invest Ophthalmol Vis Sci

Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States.

Published: August 2023

Purpose: Lens transparency relies on the precise organization of lens fiber cells. The formation of the highly ordered lens architecture results from not only cell-cell adhesion along the lateral interfaces, but also from proper organization of fiber cells tips at lens sutures. Little is known about the cell adhesion between fiber tips at the sutures. The purpose of this study is to map suture-specific protein distributions.

Methods: Tissue sections were obtained from fresh frozen bovine lenses and washes were performed to remove soluble proteins and to retain membrane and membrane associated proteins. Imaging mass spectrometry (IMS) combined with on-tissue trypsin digestion was used to visualize protein spatial distributions. Sutures and adjacent regions were captured by laser capture microdissection and samples were digested by trypsin. Proteins were analyzed by liquid chromatography tandem MS and quantified by label-free quantification. Protein spatial distributions were confirmed by immunofluorescence.

Results: IMS results showed enrichment of adherens junction proteins cadherin-2 and armadillo repeat gene deleted in velo-cardio-facial syndrome (ARVCF) in both anterior and posterior sutures of bovine lenses. Liquid chromatography tandem MS confirmed higher expression of cadherin-2 and ARVCF and other adherens junction proteins including catenin α2 (CTNNA2) and catenin β1 (CTNNB1) in sutures. In contrast, IMS indicated low expression of gap junction protein connexin 50 and connexin 46 in the suture regions. The localization of cadherin-2 and connexin 50 was confirmed by immunofluorescence.

Conclusions: The complementary expression of adherens junction proteins and gap junction proteins in lens suture regions implicates adherens junctions in fiber cell tip adhesion and in maintaining the integrity of the lens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445239PMC
http://dx.doi.org/10.1167/iovs.64.11.28DOI Listing

Publication Analysis

Top Keywords

junction proteins
16
adherens junction
12
fiber cells
8
cell adhesion
8
bovine lenses
8
protein spatial
8
spatial distributions
8
liquid chromatography
8
chromatography tandem
8
gap junction
8

Similar Publications

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

Background: Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products (AGEs), is endogenously produced and prevalent in various ultra-processed foods. MGO has emerged as a significant precursor implicated in the pathogenesis of type 2 diabetes and neurodegenerative diseases. To date, the effects of dietary MGO on the intestine have been limited explored.

View Article and Find Full Text PDF

Dynamic behavior of cell-cell adhesion factors in collective cell migration.

Cells Dev

January 2025

Quantitative and Imaging Biology, International Research Collaboration Center (IRCC), National Institutes of Natural Sciences (NINS), Japan; Trans-Scale Biology Center, National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences (NINS), Japan. Electronic address:

Collective cell migration is a fundamental process underlying various biological phenomena, including embryonic development and cancer cell invasion. The cohesive yet flexible movement of cell collectives largely depends on the coordinated regulation of cell-cell and cell-substrate adhesions. In this review, we summarize the regulation of key cell-cell junction components, such as cadherins and zonula occludens proteins during collective cell migration, with a particular focus on the recently discovered multifaceted roles of ZO-1 in both cell-cell and cell-substrate interactions.

View Article and Find Full Text PDF

Patterns of Isoform Variation for N Gene Subgenomic mRNAs in Betacoronavirus Transcriptomes.

Viruses

December 2024

Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA.

The nucleocapsid (N) protein is the most expressed protein in later stages of SARS-CoV-2 infection with several important functions. It is translated from a subgenomic mRNA (sgmRNA) formed by template switching during transcription. A recently described translation initiation site (TIS) with a CTG codon in the leader sequence (TIS-L) is out of frame with most structural and accessory genes including the N gene and may act as a translation suppressor.

View Article and Find Full Text PDF

Therapeutic Potential of (L.) . Leaf Extract in Modulating Gut Microbiota and Immune Response for the Treatment of Inflammatory Bowel Disease.

Pharmaceuticals (Basel)

January 2025

School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China.

Inflammatory bowel disease (IBD) is a persistent inflammatory condition affecting the gastrointestinal tract, distinguished by the impairment of the intestinal epithelial barrier, dysregulation of the gut microbiota, and abnormal immune responses. (L.) , traditionally used in Chinese herbal medicine for gastrointestinal issues such as bleeding and dysentery, has garnered attention for its potential therapeutic benefits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!