Preparation of SBA-15 supported Ru nanocatalysts by electrostatic adsorption-ultrasonic in situ reduction method and its catalytic performance for hydrogen storage of N-ethylcarbazole.

Environ Sci Pollut Res Int

National Center for International Research on Catalytic Technology, Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Material Sciences, Heilongjiang University, Harbin, 150080, China.

Published: September 2023

N-ethylcarbazole (NEC) is an ideal liquid organic hydrogen storage carrier. The development of efficient hydrogen storage catalysts can promote the large-scale application of this process. In this paper, SBA-15 supported Ru nanocatalysts (Ru/S15-SU) were synthesized by strong electrostatic adsorption (SEA)-ultrasonic in situ reduction method (UR). Ru/S15-SU was characterized by N adsorption-desorption, TEM, H temperature program reduction, FT-IR, XRD, and XPS analysis measures. The results showed that ultrafine Ru NPs were evenly distributed on the surface of SBA-15, and ultrasonic in situ reduction not only reduced Ru to Ru, but also produced a coordination effect between Ru and O, enhancing the interaction between Ru NPs and the carrier. Ru/S15-SU exhibited excellent catalytic performance in the hydrogenation reaction of NEC, and the hydrogen storage efficiency reached 99.31% at 130°C and 6 MPa H pressure, which is superior to that of commercial 5wt%Ru/AlO. The excellent catalytic hydrogenation performance can be attributed to the selective anchoring of ruthenium ions on the surface of SBA-15 via electrostatic adsorption, preventing the aggregation of Ru NPs and enhancing the interaction between SBA-15 and Ru NPs by ultrasonic in situ reduction. Ru/S15-SU had a lower NEC hydrogenation apparent activated energy (E) of 68.45 kJ/mol than 5wt%Ru/AlO catalyst. This method provides a new approach for the green preparation of nanocatalysts without using any chemical reducing agents.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-29223-zDOI Listing

Publication Analysis

Top Keywords

situ reduction
16
hydrogen storage
16
sba-15 supported
8
supported nanocatalysts
8
reduction method
8
catalytic performance
8
electrostatic adsorption
8
surface sba-15
8
ultrasonic situ
8
enhancing interaction
8

Similar Publications

In Situ Preparation of Silver Nanoparticles/Organophilic-Clay/Polyethylene Glycol Nanocomposites for the Reduction of Organic Pollutants.

Polymers (Basel)

December 2024

Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.

This work focuses on the preparation and application of silver nanoparticles/organophilic clay/polyethylene glycol for the catalytic reduction of the contaminants methylene blue (MB) and 4-nitrophenol (4-NP) in a simple and binary system. Algerian clay was subjected to a series of treatments including acid treatment, ion exchange with the surfactant hexadecyltrimethylammonium bromide (HTABr), immobilization of polyethylene glycol polymer, and finally dispersion of AgNPs. The molecular weight of polyethylene glycol was varied (100, 200, and 4000) to study its effect on the stabilization of silver nanoparticles (AgNPs) and the catalytic activity of the resulting samples.

View Article and Find Full Text PDF

As a sustainable alternative technology to the cost- and energy-intensive Haber-Bosch method, electrochemical nitrogen (N) reduction offers direct conversion of N to NH under ambient conditions. Direct use of noble metals or non-noble metals as electrocatalytic materials results in unsatisfactory electrocatalytic properties because of their low electrical conductivity and stability. Herein, three-dimensional flexible carbon nanofiber (CNF/TiO@CoS) nanostructures were prepared on the surface of CNF by using electrospinning, a hydrothermal method, and in situ growth.

View Article and Find Full Text PDF

Developing efficient and cost-effective rare earth element-based electrocatalysts for water splitting remains a significant challenge. To address this, interface engineering and charge modulation strategies were employed to create a three-dimensional coral-like CeF/MoO heterostructure electrocatalyst, grown in situ on the multistage porous channels of carbonized sugarcane fiber (CSF). Integrating abundant CeF/MoO heterostructure interfaces and numerous oxygen vacancy defects significantly enhanced the catalyst's active sites and molecular activation capabilities.

View Article and Find Full Text PDF

Structure-activity relationship of small organic molecule functionalized Bi-based heterogeneous catalysts for electrocatalytic reduction of CO to formate.

J Colloid Interface Sci

January 2025

Chemical Engineering College, Inner Mongolia University of Technology, Aimin street 49 Xincheng District, Hohhot 010051 PR China; Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Aimin street 49, Xincheng District, Hohhot 010051 PR China; Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Aimin street 49 Xincheng District, Hohhot 010051 PR China. Electronic address:

Ligand engineering has proven to be an effective strategy for tuning and controlling the microenvironment of coordinated metal centers, highlighting the critical bridge between the activity and structural features of catalysts during electrocatalytic CO reduction reactions (eCORR). However, the limited availability of diverse organic ligands has hindered the development of novel high-performing electrocatalysts. In contrast, small organic molecules have been widely used in the fabrication of metal complexes due to their well-defined functionalities, low cost, and easy accessibility.

View Article and Find Full Text PDF

The construction of coupled electrolysis systems utilizing renewable energy sources for electrocatalytic nitrate reduction and sulfion oxidation reactions (NORR and SOR), is considered a promising approach for environmental remediation, ammonia production, and sulfur recovery. Here, a simple chemical dealloying method is reported to fabricate a hierarchical porous multi-metallic spinel MFeO (M═Ni, Co, Fe, Mn) dual-functional electrocatalysts consisting of Mn-doped porous NiFeO/CoFeO heterostructure networks and Ni/Co/Mn co-doped FeO nanosheet networks. The excellent NORR with high NH Faradaic efficiency of 95.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!